A. | (3,+∞) | B. | (-∞,0)∪(3,+∞) | C. | (0,+∞) | D. | (-∞,0)∪(0,+∞) |
分析 構造函數g(x)=exf(x)-ex,(x∈R),研究g(x)的單調性,不等式$\frac{{{e^x}f(x)}}{{{e^x}+3}}$>1轉化為exf(x)>ex+3,結合原函數的性質和函數值,即可求解.
解答 解:設g(x)=exf(x)-ex,(x∈R),
則g′(x)=exf(x)+exf′(x)-ex=ex[f(x)+f′(x)-1],
∵f(x)+f′(x)>1,
∴f(x)+f′(x)-1>0,
∴g′(x)>0,
∴y=g(x)在定義域上單調遞增,
不等式$\frac{{{e^x}f(x)}}{{{e^x}+3}}$>1轉化為exf(x)>ex+3,
∴g(x)>3,
又∵g(0)═e0f(0)-e0=4-1=3,
∴g(x)>g(0),
∴x>0
故選:C
點評 本題考查函數單調性與奇偶性的結合,結合已知條件構造函數,然后用導數判斷函數的單調性是解題的關鍵.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | e2 | D. | 2e2 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $({0,\;\frac{1}{2}}]$ | B. | $({0,\;\frac{1}{3}}]$ | C. | $({0,\;\frac{1}{4}}]$ | D. | $[{\frac{1}{4},\;\;\frac{1}{3}}]$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com