【題目】在如圖所示的多面體中,底面四邊形
是菱形,
,
,
相交于
,
,
在平面
上的射影恰好是線段
的中點
.
(Ⅰ)求證:平面
;
(Ⅱ)若直線與平面
所成的角為
,求平面
與平面
所成銳二面角的余弦值.
【答案】(Ⅰ)見解析;(Ⅱ).
【解析】試題分析:(1)證明線面垂直先證明線線垂直,EH⊥BD,AC⊥BD,∴BD⊥平面EACF,即BD⊥平面ACF;(2)建立空間坐標系,求兩個平面的法向量,根據向量夾角的求法得到面面角.
解析:
(Ⅰ)取AO的中點H,連結EH,則EH⊥平面ABCD
∵BD在平面ABCD內,∴EH⊥BD
又菱形ABCD中,AC⊥BD 且EH∩AC=H,EH、AC在平面EACF內
∴BD⊥平面EACF,即BD⊥平面ACF
(Ⅱ)由(Ⅰ)知EH⊥平面ABCD,以H為原點,如圖所示建立空間直角坐標系H﹣xyz
∵EH⊥平面ABCD,∴∠EAH為AE與平面ABCD所成的角,
即∠EAH=45°,又菱形ABCD的邊長為4,則
各點坐標分別為,
E(0,0,)
易知為平面ABCD的一個法向量,記
=
,
=
,
=
∵EF∥AC,∴=
設平面DEF的一個法向量為(注意:此處
可以用
替代)
即 =
,
令,則,∴
∴
平面DEF與平面ABCD所成角(銳角)的余弦值為.
科目:高中數學 來源: 題型:
【題目】2017年8月20日起,市交警支隊全面啟動路口秩序環境綜合治理,重點整治機動車不禮讓斑馬線和行人的行為,經過一段時間的治理,從市交警隊數據庫中調取了20個路口近三個月的車輛違章數據,經統計得如圖所示的頻率分布直方圖,統計數據中凡違章車次超過30次的設為“重點關注路口”.
(1)現從“重點關注路口”中隨機抽取兩個路口安排交警去執勤,求抽出來的路口的違章車次一個在,一個在
中的概率;
(2)現從支隊派遣5位交警,每人選擇一個路口執勤,每個路口至多1人,違章車次在的路口必須有交警去,違章車次在
的不需要交警過去,設去“重點關注路口”的交警人數為
,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線在平面直角坐標系
下的參數方程為
(
為參數),以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系.
(1)求曲線的普通方程及極坐標方程;
(2)直線的極坐標方程是
,射線
:
與曲線
交于點
與直線
交于點
,求線段
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 若f(x1)=f(x2),且x1<x2,關于下列命題:(1)f(x1)>f(﹣x2);(2)f(x2)>f(﹣x1);(3)f(x1)>f(﹣x1);(4)f(x2)>f(﹣x2).正確的個數為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com