日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知,Rt△ABC中,∠C=90°,AC=4,BC=3.以AC上一點O為圓心的⊙O與BC相切于點C,與AC相交于點D.
(1)如圖1,若⊙O與AB相切于點E,求⊙O的半徑;
(2)如圖2,若⊙O在AB邊上截得的弦FG=
2
31
5
,求⊙O的半徑.精英家教網
分析:(1)由于AB和圓相切,所以連接OE,利用相似即可求出OE.
(2)已知弦長,求半徑,要做弦的弦心距,構造直角三角形,利用勾股定理求出未知量.
解答:精英家教網解:(1)連接OE,因為⊙O與AB相切于點E,所以OE⊥AB,
設OE=x,則CO=x,AO=4-x,
∵⊙O與AB相切于點E,
∴∠AEO=90°,
∵∠A=∠A,∠AEO=∠ACB=90°,
∴Rt△AOE∽Rt△ABC,
OE
BC
=
AO
AB
,
x
3
=
4-x
5
,
解得:x=
3
2
,
∴⊙O的半徑為
3
2

(2)過點O作OH⊥AB,垂足為點H,則H為FG的中點,FH=
1
2
FG=
31
5
,
精英家教網
連接OF,設OF=x,則OA=4-x,
由Rt△AOH∽Rt△ABC可得OH=
12-3x
5
,
在Rt△OHF中,據勾股定理得:OF2=FG2+OH2
∴x2=(
31
5
2+(
12-3x
5
2,
解得x1=
7
4
,x2=-
25
4
(舍去),
∴⊙O的半徑為
7
4
點評:本題綜合考查了切線的性質,相似三角形,解直角三角形等知識點的運用.是一道運用切線性質解題的典型題目,難度中等.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知在Rt△ABC中,∠ACB=90°,BC=4,AC=3,點P是AB上一動點.建立適當的坐標系,求直線AB的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等腰Rt△ABC中,∠C=90°.在直角邊BC上任取一點M,使∠CAM<30°的概率為
3
3
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等腰Rt△ABC中,∠C=90°,D為斜邊的中點,設=a,=b,試用向量a、b表示、.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等腰Rt△ABC中,∠C=90°.

(1)在線段BC上任取一點M,求使∠CAM<30°的概率;

(2)在∠CAB內任作射線AM,求使∠CAM<30°的概率.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品久久久久久久久久免费看 | 国产一级淫免费播放m | 国精品一区 | 欧美成人一区二区 | 亚洲视频在线观看网址 | 日韩一区二区三区在线 | 亚州视频一区二区三区 | 久操伊人 | 日本在线播放 | 成年人av网站 | 欧洲亚洲视频 | 国产精品人成在线播放 | 爱爱视频网站 | 国产一级免费看 | 91高清在线 | 中文字幕在线免费视频 | 国产精品1 | 国产精品欧美日韩在线观看 | 色综合久久久久久久 | 一级黄色在线 | 日韩视频一区在线观看 | 国产精品对白一区二区三区 | 91最新网站 | 91精品黄色| 欧美午夜视频在线观看 | 九色av| 亚洲一区二区三区中文字幕 | 久久精品国产亚洲 | 欧美激情视频一区二区三区不卡 | 亚洲 欧美 激情 另类 校园 | 精品久 | 欧美精品在线免费观看 | 日本精品久久久一区二区三区 | 久久狠狠| 日韩欧美综合在线 | www.99re| www久久99 | 国产精品一二三 | 中文字幕高清一区 | 在线观看国产一级片 | 亚洲视频在线观看免费 |