【題目】已知函數f(x)=x3﹣3ax﹣1,a≠0
(1)求f(x)的單調區間;
(2)若f(x)在x=﹣1處取得極值,直線y=m與y=f(x)的圖象有三個不同的交點,求m的取值范圍.
【答案】
(1)解:f′(x)=3x2﹣3a=3(x2﹣a),
當a<0時,對x∈R,有f′(x)>0,
當a<0時,f(x)的單調增區間為(﹣∞,+∞)
當a>0時,由f′(x)>0解得 或
;
由f′(x)<0解得 ,
當a>0時,f(x)的單調增區間為 ;
f(x)的單調減區間為
(2)解:因為f(x)在x=﹣1處取得極大值,
所以f′(﹣1)=3×(﹣1)2﹣3a=0,∴a=1.
所以f(x)=x3﹣3x﹣1,f′(x)=3x2﹣3,
由f′(x)=0解得x1=﹣1,x2=1.
由(1)中f(x)的單調性可知,f(x)在x=﹣1處取得極大值f(﹣1)=1,
在x=1處取得極小值f(1)=﹣3.
因為直線y=m與函數y=f(x)的圖象有三個不同的交點,
結合f(x)的單調性可知,m的取值范圍是(﹣3,1)
【解析】(1)先確求導數fˊ(x),在函數的定義域內解不等式fˊ(x)>0和fˊ(x)<0,fˊ(x)>0的區間是增區間,fˊ(x)<0的區間是減區間.(2)先根據極值點求出a,然后利用導數研究函數的單調性,求出極值以及端點的函數值,觀察可知m的范圍.
【考點精析】關于本題考查的利用導數研究函數的單調性和函數的極值與導數,需要了解一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減;求函數
的極值的方法是:(1)如果在
附近的左側
,右側
,那么
是極大值(2)如果在
附近的左側
,右側
,那么
是極小值才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD的底面為菱形,∠BCD=120°,AB=PC=2,AP=BP= .
(1)求證:AB⊥PC;
(2)求二面角B一PC﹣D的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex﹣1+x﹣2(e為自然對數的底數).g(x)=x2﹣ax﹣a+3.若存在實數x1 , x2 , 使得f(x1)=g(x2)=0.且|x1﹣x2|≤1,則實數a的取值范圍是
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點(1,﹣2)和( ,0)在直線l:ax﹣y﹣1=0(a≠0)的兩側,則直線l的傾斜角的取值范圍是( )
A.( ,
)
B.( ,
)
C.( ,
)
D.(0, )∪(
,π)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC的三個內角A,B,C的對邊長分別為a,b,c,R是△ABC的外接圓半徑,有下列四個條件: ①(a+b+c)(a+b﹣c)=3ab
②sinA=2cosBsinC
③b=acosC,c=acosB
④
有兩個結論:甲:△ABC是等邊三角形.乙:△ABC是等腰直角三角形.
請你選取給定的四個條件中的兩個為條件,兩個結論中的一個為結論,寫出一個你認為正確的命題 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】袋中有形狀和大小完全相同的四種不同顏色的小球,每種顏色的小球各有4個,分別編號為1,2,3,4.現從袋中隨機取兩個球.
(Ⅰ)若兩個球顏色不同,求不同取法的種數;
(Ⅱ)在(1)的條件下,記兩球編號的差的絕對值為隨機變量X,求隨機變量X的概率分布與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個樣本M的數據是x1 , x2 , …,xn , 它的平均數是5,另一個樣本N的數據x12 , x22 , …,xn2它的平均數是34.那么下面的結果一定正確的是( )
A.SM2=9
B.SN2=9
C.SM2=3
D.Sn2=3
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com