【題目】已知向量,
,函數
.
(1)求的最小正周期及
圖象的對稱軸方程;
(2)若先將的圖象上每個點縱坐標不變,橫坐標變為原來的2倍,然后再向左平移
個單位長度得到函數
的圖象,求函數
在區間
內的所有零點之和.
科目:高中數學 來源: 題型:
【題目】已知是公差不為零的等差數列,滿足
,且
、
、
成等比數列.
(1)求數列的通項公式;
(2)設數列滿足
,求數列
的前
項和
.
【答案】(1);(2)
【解析】試題分析:(1)設等差數列 的公差為
,由a3=7,且
、
、
成等比數列.可得
,解之得即可得出數列
的通項公式;
2)由(1)得,則
,由裂項相消法可求數列
的前
項和
.
試題解析:(1)設數列的公差為
,且
由題意得
,
即 ,解得
,
所以數列的通項公式
.
(2)由(1)得
,
.
【題型】解答題
【結束】
18
【題目】四棱錐的底面
為直角梯形,
,
,
,
為正三角形.
(1)點為棱
上一點,若
平面
,
,求實數
的值;
(2)求點B到平面SAD的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設是兩條不同的直線,
是兩個不同的平面,則下列命題中正確的是( )
A. 若,
,則
B. 若,
,則
C. 若,
,
,則
D. 若,且
,點
,直線
,則
【答案】C
【解析】A. 若,
,則
或
;
B. 若,
,則
無交點,即平行或異面;
C. 若,
,
,過
作平面與
分別交于直線s,t,則
,
,所以
t,再根據線面平行判定定理得
,因為
,
,所以
,即
D. 若,且
,點
,直線
,當B在平面
內時才有
,
綜上選C.
【題型】單選題
【結束】
11
【題目】甲、乙、丙、丁四位同學參加比賽,只有其中三位獲獎.甲說:“乙或丙未獲獎”;乙說:“甲、丙都獲獎”;丙說:“我未獲獎”;丁說:“乙獲獎”.四位同學的話恰有兩句是對的,則( )
A. 甲和乙不可能同時獲獎 B. 丙和丁不可能同時獲獎
C. 乙和丁不可能同時獲獎 D. 丁和甲不可能同時獲獎
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓:
的左、右焦點分別為
、
,若橢圓過點
.
(1)求橢圓的方程;
(2)若為橢圓的左、右頂點,
(
)為橢圓上一動點,設直線
分別交直線
:
于點
,判斷線段
為直徑的圓是否經過定點,若是,求出該定點坐標;若不恒過定點,說明理由.
【答案】(1) ;(2)答案見解析.
【解析】試題分析:(1)將點坐標代人橢圓方程 并與離心率聯立方程組,解得,
(2)根據點斜式得直線
方程,與直線
聯立解得點
坐標,根據向量關系得
為直徑的圓方程,最后代人橢圓方程進行化簡,并根據恒等式成立條件求定點坐標.
試題解析:(1)由已知,
∴①
∵橢圓過點,
∴②
聯立①②得,
∴橢圓方程為
(2)設,已知
∵,∴
∴都有斜率
∴
∴③
∵
∴④
將④代入③得
設方程
∴方程
∴
由對稱性可知,若存在定點,則該定點必在軸上,設該定點為
則
∴
∴,∴
∴存在定點或
以線段
為直徑的圓恒過該定點.
點睛:定點的探索與證明問題
(1)探索直線過定點時,可設出直線方程為,然后利用條件建立
等量關系進行消元,借助于直線系的思想找出定點.
(2)從特殊情況入手,先探求定點,再證明與變量無關.
【題型】解答題
【結束】
21
【題目】已知函數,曲線
在
處的切線經過點
.
(1)證明: ;
(2)若當時,
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,以橢圓
的任意三個頂點為頂點的三角形的面積是
.
(1)求橢圓的方程;
(2)設是橢圓
的右頂點,點
在
軸上.若橢圓
上存在點
,使得
,求點
橫坐標的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,已知AA1⊥底面ABC,AC⊥BC,四邊形BB1C1C為正方形,設AB1的中點為D,B1C∩BC1=E.
求證:(1)DE∥平面AA1C1C;
(2)BC1⊥平面AB1C.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下圖是某省從1月21日至2月24日的新冠肺炎每日新增確診病例變化曲線圖.
若該省從1月21日至2月24日的新冠肺炎每日新增確診人數按日期順序排列構成數列,
的前n項和為
,則下列說法中正確的是( )
A.數列是遞增數列B.數列
是遞增數列
C.數列的最大項是
D.數列
的最大項是
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】根據拋物線的光學原理:平行于拋物線的軸的光線,經拋物線反射后,反射光線必經過焦點.然后求解此題:有一條光線沿直線射到拋物線
(
)上的一點
,經拋物線反射后,反射光線所在直線的斜率為
.
(Ⅰ)求拋物線的標準方程;
(Ⅱ)過定點的直線l與拋物線交于
兩點,與直線
交于Q點,若
,
=
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),其中x∈[0,15],a>0,且a≠1.
(1)若1是關于x的方程f(x)﹣g(x)=0的一個解,求t的值;
(2)當0<a<1時,不等式f(x)≥g(x)恒成立,求t的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com