已知橢圓的離心率為
,橢圓的短軸端點與雙曲線
的焦點重合,過點
且不垂直于
軸直線
與橢圓
相交于
、
兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)求的取值范圍.
科目:高中數學 來源: 題型:解答題
已知橢圓C:的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(1)求橢圓的方程;
(2)若過點(2,0)的直線與橢圓
相交于兩點
,設
為橢圓上一點,且滿足
(
為坐標原點),當
時,求實數
取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在軸上方有一段曲線弧
,其端點
、
在
軸上(但不屬于
),對
上任一點
及點
,
,滿足:
.直線
,
分別交直線
于
,
兩點.
(Ⅰ)求曲線弧的方程;
(Ⅱ)求的最小值(用
表示);
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓過點
,離心率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點且斜率為
(
)的直線
與橢圓
相交于
兩點,直線
、
分別交直線
于
、
兩點,線段
的中點為
.記直線
的斜率為
,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知雙曲線(a>0,b>0)的離心率
,過點A(0,-b)和B(a,0)的直線與原點的距離是
.
(Ⅰ)求雙曲線的方程及漸近線方程;
(Ⅱ)若直線y=kx+5 (k≠0)與雙曲線交于不同的兩點C、D,且兩點都在以A為圓心的同一個圓上,求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)已知圓M:(x+1)2+y2=1,圓N:(x-1)2+y2=9,動圓P與圓M外切并與圓N內切,圓心P的軌跡為曲線 C
(Ⅰ)求C的方程;
(Ⅱ)l是與圓P,圓M都相切的一條直線,l與曲線C交于A,B兩點,當圓P的半徑最長時,求|AB|.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
點P是橢圓外的任意一點,過點P的直線PA、PB分別與橢圓相切于A、B兩點。
(1)若點P的坐標為,求直線
的方程。
(2)設橢圓的左焦點為F,請問:當點P運動時,是否總是相等?若是,請給出證明。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知雙曲線經過點
,且雙曲線
的漸近線與圓
相切.
(1)求雙曲線的方程;
(2)設是雙曲線
的右焦點,
是雙曲線
的右支上的任意一點,試判斷以
為直徑的圓與以雙曲線實軸為直徑的圓的位置關系,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com