已知橢圓C:的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(1)求橢圓的方程;
(2)若過點(2,0)的直線與橢圓
相交于兩點
,設
為橢圓上一點,且滿足
(
為坐標原點),當
時,求實數
取值范圍.
(1) ;(2)
.
解析試題分析:(1)先根據圓心到直線的距離等于半徑,求出圓的半徑即橢圓短半軸的長,然后由離心率求出和
的關系,進而得到
的值,寫出橢圓方程即可;(2)先設出直線方程,再由直線方程與橢圓方程聯立方程組,求得
,
兩點的橫坐標滿足的方程
,它的判別式大于零得到
,然后由已知條件
,結合兩點間的距離公式以及根與系數的關系求得,
,從而解得
,根據已知有
以及點
在橢圓上,先求出點
的坐標,然后代入橢圓方程可知
,結合求解的
,即可得到
的解集.
試題解析:(1)由題意知,短半軸長為:,
∵,∴
,
即,∴
,
故橢圓的方程為:
. 2分
(2)由題意知,直線的斜率存在,設直線
:
,
設,
,
,
由得,
.
,解得
. 4分
.
∵,∴
,
解得,
.
∵點在橢圓上,∴
,
∴. ..7分
∵,∴
,
∴,
∴,
∴,∴
10分
∴,
∵,∴
,
∴或
,
∴實數取值范圍為
. 12分
考點:1.橢圓的標準方程;2.點到直線的距離公式;3.方程的根與系數的關系;4.解不等式;5.平面向量的坐標運算
科目:高中數學 來源: 題型:解答題
設橢圓E:=1(
)過點M(2,
), N(
,1),
為坐標原點
(I)求橢圓E的方程;
(II)是否存在以原點為圓心的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程;若不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在直角坐標系中,已知中心在原點,離心率為
的橢圓E的一個焦點為圓
的圓心.
⑴求橢圓E的方程;
⑵設P是橢圓E上一點,過P作兩條斜率之積為的直線
,當直線
都與圓
相切時,求P點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓,
、
是其左右焦點,離心率為
,且經過點
.
(1)求橢圓的標準方程;
(2)若、
分別是橢圓長軸的左右端點,
為橢圓上動點,設直線
斜率為
,且
,求直線
斜率的取值范圍;
(3)若為橢圓上動點,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點F是拋物線C:的焦點,S是拋物線C在第一象限內的點,且|SF|=
.
(Ⅰ)求點S的坐標;
(Ⅱ)以S為圓心的動圓與軸分別交于兩點A、B,延長SA、SB分別交拋物線C于M、N兩點;
①判斷直線MN的斜率是否為定值,并說明理由;
②延長NM交軸于點E,若|EM|=
|NE|,求cos∠MSN的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,已知橢圓
的左焦點為
,且橢圓
的離心率
.
(1)求橢圓的方程;
(2)設橢圓的上下頂點分別為
,
是橢圓
上異于
的任一點,直線
分別交
軸于點
,證明:
為定值,并求出該定值;
(3)在橢圓上,是否存在點
,使得直線
與圓
相交于不同的兩點
,且
的面積最大?若存在,求出點
的坐標及對應的
的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
知橢圓的離心率為
,橢圓短軸的一個端點與兩個焦點構成的三角形的面積為
,直線l的方程為:
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線l與橢圓相交于
、
兩點
①若線段中點的橫坐標為
,求斜率
的值;
②已知點,求證:
為定值
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線的焦點坐標為
,過
的直線交拋物線
于
兩點,直線
分別與直線
:
相交于
兩點.
(1)求拋物線的方程;
(2)證明△ABO與△MNO的面積之比為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com