【題目】某種設備隨著使用年限的增加,每年的維護費相應增加.現對一批該設備進行調查,得到這批設備自購入使用之日起,前5年平均每臺設備每年的維護費用大致如表:
年份 | |||||
維護費 |
(I)從這年中隨機抽取兩年,求平均每臺設備每年的維護費用至少有
年多于
萬元的概率;
(II)求關于
的線性回歸方程;若該設備的價格是每臺
萬元,你認為應該使用滿五年換一次設備,還是應該使用滿八年換一次設備?并說明理由.
參考公式:用最小二乘法求線性回歸方程的系數公式:
科目:高中數學 來源: 題型:
【題目】某花圃為提高某品種花苗質量,開展技術創新活動,在實驗地分別用甲、乙方法培訓該品種花苗.為觀測其生長情況,分別在實驗地隨機抽取各
株,對每株進行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為
及以上的花苗為優質花苗.
求圖中
的值,并求綜合評分的中位數.
用樣本估計總體,以頻率作為概率,若在
兩塊試驗地隨機抽取
棵花苗,求所抽取的花苗中的優質花苗數的分布列和數學期望;
填寫下面的列聯表,并判斷是否有
的把握認為優質花苗與培育方法有關.
附:下面的臨界值表僅供參考.
(參考公式:,其中
.)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某小學舉辦“父母養育我,我報父母恩”的活動,對六個年級(一年級到六年級的年級代碼分別為1,2…,6)的學生給父母洗腳的百分比y%進行了調查統計,繪制得到下面的散點圖.
(1)由散點圖看出,可用線性回歸模型擬合y與x的關系,請用相關系數加以說明;
(2)建立y關于x的回歸方程,并據此預計該校學生升入中學的第一年(年級代碼為7)給父母洗腳的百分比.
附注:參考數據:
參考公式:相關系數,若r>0.95,則y與x的線性相關程度相當高,可用線性回歸模型擬合y與x的關系.回歸方程
中斜率與截距的最小二乘估計公式分別為
=
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列結論:
“直線l與平面
平行”是“直線l在平面
外”的充分不必要條件;
若p:
,
,則
:
,
;
命題“設a,
,若
,則
或
”為真命題;
“
”是“函數
在
上單調遞增”的充要條件.
其中所有正確結論的序號為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點為
,
為短軸的一個端點且
(其中
為坐標原點).
(1)求橢圓的方程;
(2)若、
分別是橢圓長軸的左右端點,動點
滿足
,連接
,交橢圓于點
,試問
軸上是否存在異于點
的定點
,使得以
為直徑的圓恒過直線
、
的交點,若存在,求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓,拋物線
焦點均在x軸上,
的中心和
頂點均在原點O,從每條曲線上各取兩個點,將其坐標記錄于表中,則
的左焦點到
的準線之間的距離為( )
3 | -2 | 4 | ||
0 | -4 |
A.B.
C.1D.2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在上的函數
,
單調遞增,
,若對任意
,存在
,使得
成立,則稱
是
在
上的“追逐函數”.若
,則下列四個命題:①
是
在
上的“追逐函數”;②若
是
在
上的“追逐函數”,則
;③
是
在
上的“追逐函數”;④當
時,存在
,使得
是
在
上的“追逐函數”.其中正確命題的個數為( )
A. ①③B. ②④C. ①④D. ②③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某興趣小組有男生20人,女生10人,從中抽取一個容量為5的樣本,恰好抽到2名男生和3名女生,則
①該抽樣可能是系統抽樣;
②該抽樣可能是隨機抽樣:
③該抽樣一定不是分層抽樣;
④本次抽樣中每個人被抽到的概率都是.
其中說法正確的為( )
A.①②③B.②③C.②③④D.③④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com