日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
在△ABC中,角A、B、C對邊分別為a、b、c,證明:
a2-b2
c2
=
sin(A-B)
sinC
分析:由余弦定理得到a2,b2的表達式,兩者作差整理即
a2-b2
c2
=
acosB-bcosA
c
,再正弦定理將等式右邊的a,b,c換成sinA,sinB,sinC來表示,逆用正弦的差角公式即可得出結論.
解答:證明:由余弦定理a2=b2+c2-2bccosA,
b2=a2+c2-2accosB,(3分)
∴a2-b2=b2-a2-2bccosA+2accosB整理得
a2-b2
c2
=
acosB-bcosA
c
(6分)
依正弦定理,有
a
c
=
sinA
sinC
b
c
=
sinB
sinC
,(9分)

a2-b2
c2
=
sinAcosB-sinBcosA
sinC

=
sin(A-B)
sinC
(12分)
點評:本小題主要考查三角形的正弦定理、余弦定理等基礎知識,考查三角函數簡單的變形技能.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D為BC的中點,求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 自拍偷拍第一页 | 在线影院av | 欧美日韩国产成人在线 | а天堂中文最新一区二区三区 | 国产精品日韩 | 中文字幕乱码一区二区三区 | 亚洲精品视频一区二区三区 | 一二三区不卡视频 | 日本视频一区二区三区 | 欧美福利一区二区三区 | 午夜精品一区二区三区免费视频 | 色呦呦在线视频 | 免费观看一级特黄欧美大片 | 成人看的免费视频 | 日本在线视频观看 | 性高湖久久久久久久久aaaaa | 日韩一区二区免费视频 | 黄色网在线看 | 久久三区 | 国产一区二区三区91 | 日韩高清中文字幕 | 蜜桃在线视频 | 久久久久久国产精品 | 日韩成人在线播放 | 国产精品美女视频一区二区三区 | aaa日本高清在线播放免费观看 | 久精品视频 | 国产福利一区二区三区四区 | 国产亚洲一区二区在线观看 | 免费v片 | 精品欧美一区二区三区 | 亚洲免费一级片 | 97综合| 欧美精品导航 | 亚洲不卡视频 | 日韩一区二区三区四区五区六区 | 国产日韩欧美亚洲 | 2018国产精品 | 成人国产精品视频 | 午夜一级黄色片 | 国产欧美精品一区二区三区四区 |