【題目】已知底面邊長為a的正三棱柱(底面是等邊三角形的直三棱柱)的六個(gè)頂點(diǎn)在球
上,且球
與此正三棱柱的5個(gè)面都相切,則球
與球
的表面積之比為________.
【答案】
【解析】
設(shè)球與球
的半徑分別為R,r,由題意分析球
的半徑等于正三棱柱底面正三角形內(nèi)切圓的半徑,且等于正三棱柱高的一半,求出其半徑r,再由球
的球心在上下底面中心連線的中點(diǎn)上,求出半徑R,再由球的表面積公式求出比值即可.
設(shè)球與球
的半徑分別為R,r,因?yàn)榍?/span>
與此正三棱柱的5個(gè)面都相切,所以球
的半徑等于正三棱柱底面正三角形內(nèi)切圓的半徑,且等于正三棱柱高的一半,如圖所示,因?yàn)檎庵?/span>
底面邊長為a的正三棱柱,所以
,所以
,
,因?yàn)檎庵?/span>
的六個(gè)頂點(diǎn)在球
上,所以球
的球心在上下底面中心連線的中點(diǎn)上,所以
,所以球
與球
的表面積之比為
,所以表面積之比為
.
故答案為:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在邊長為3的菱形中,已知
,且
.將梯形
沿直線
折起,使
平面
,如圖2,
分別是
上的點(diǎn).
(1)若平面平面
,求
的長;
(2)是否存在點(diǎn),使直線
與平面
所成的角是
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的右焦點(diǎn)為
,過點(diǎn)
作與
軸垂直的直線
交橢圓于
,
兩點(diǎn)(點(diǎn)
在第一象限),過橢圓的左頂點(diǎn)和上頂點(diǎn)的直線
與直線
交于
點(diǎn),且滿足
,設(shè)
為坐標(biāo)原點(diǎn),若
,
,則該橢圓的離心率為( )
A. B.
C.
或
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(
為常數(shù)).
(1)求的極值;
(2)設(shè),記
,已知
為函數(shù)
是兩個(gè)零點(diǎn),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面是正方形的四棱錐中,
平面
,
,
是
的中點(diǎn).
(1)求證:平面
;
(2)在線段上是否存在點(diǎn)
,使得
平面
?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,左、右焦點(diǎn)分別為
、
,
為橢圓C上一點(diǎn),且
的中點(diǎn)B在y軸上,
.
(1)求橢圓C的標(biāo)準(zhǔn)方程:
(2)若直線交橢圓于P、Q兩點(diǎn),若PQ的中點(diǎn)為N,O為原點(diǎn),直線ON交直線
于點(diǎn)M,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記數(shù)列的前n項(xiàng)和為
,其中所有奇數(shù)項(xiàng)之和為
,所有偶數(shù)項(xiàng)之和為
若
是等差數(shù)列,項(xiàng)數(shù)n為偶數(shù),首項(xiàng)
,公差
,且
,求
;
若數(shù)列
的首項(xiàng)
,滿足
,其中實(shí)常數(shù)
,且
,請寫出滿足上述條件常數(shù)t的兩個(gè)不同的值和它們所對應(yīng)的數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線
的方程為
.以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求的直角坐標(biāo)方程;
(2)若與
有且僅有三個(gè)公共點(diǎn),求
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】秦九韶是我國南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例.若輸入n,x的值分別為5,2,則輸出v的值為( )
A. 64 B. 68
C. 72 D. 133
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com