已知命題A“?x∈R,x2+(a-1)x+1<0”.
(1)寫出命題A的否定;
(2)若命題A是假命題,求出實數a的取值范圍.
【答案】分析:(1)命題A的否定:?x∈R,x2+(a-1)x+1≥0;
(2由題設知?x∈R,x2+(a-1)x+1≥0,即△=(a-1)2-4≤0,由此能求出實數a的取值范圍.
解答:解:(1)命題A的否定:?x∈R,x2+(a-1)x+1≥0;
(2)∵?x∈R,x2+(a-1)x+1<0為假命題,
∴?x∈R,x2+(a-1)x+1≥0,
即△=(a-1)2-4≤0,
解得-1≤a≤3.
點評:本題考查命題的真假判斷和應用,解題時要注意不等式性質的合理運用.