【題目】如圖所示,在四棱錐 中,底面
為正方形,
平面
,且
,點
在線段
上,且
.
(Ⅰ)證明:平面 平面
;
(Ⅱ)求四棱錐 的體積.
【答案】解:(Ⅰ)證明:∵ 平面
,
平面
,
∴ .
又∵底面 為正方形,
∴ .
∵ ,
∴ 平面
.
∴ .
設(shè) 交
于點
,如圖,在
中,
∵ ,
,
,
∴由余弦定理可得 .
∴ .
∴ .
∵ ,
平面
,
平面
,
∴ 平面
.
又∵ 在平面
內(nèi),
∴平面 平面
;
(Ⅱ)由題意可得 ,
而 ,
為三棱錐
的高,
則
【解析】(Ⅰ)先由線面垂直的性質(zhì)證出P A ⊥ B D與B D ⊥ A C,再由線面垂直的判定定理證明線面垂直即可得到平面 B D E ⊥ 平面 P C D ;
(Ⅱ)設(shè)AC與BD的交點為O,連結(jié)OE,利用VE-ABCD=SP-ABCD , 可求四棱錐的體積.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知偶函數(shù)f(x)在區(qū)間(-∞,0]上單調(diào)遞減,則滿足f(2x-1)< 的x的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)定義在R上的函數(shù)y=f(x)的導(dǎo)函數(shù)為f′(x).如果存在x0∈[a,b],使得f(b)-f(a)=f′(x0)(b-a)成立,則稱x0為函數(shù)f(x)在區(qū)間[a,b]上的“中值點”.那么函數(shù)f(x)=x3-3x在區(qū)間[-2,2]上的“中值點”為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x-4+ ,x∈(0,4),當x=a時,f(x)取得最小值b,則函數(shù)g(x)=a|x+b|的圖象為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 ,直線
的斜率之積為
.
(Ⅰ)求頂點 的軌跡方程
;
(Ⅱ)設(shè)動直線
,點
關(guān)于直線
的對稱點為
,且
點在曲線
上,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知 (
).
(1)若 的解集為
,求
的值;
(2)若對任意 ,不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,
.
(Ⅰ)當 在
處的切線與直線
垂直時,方程
有兩相異實數(shù)根,求
的取值范圍;
(Ⅱ)若冪函數(shù) 的圖象關(guān)于
軸對稱,求使不等式
在
上恒成立的
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com