已知拋物線與橢圓
有公共焦點
,且橢圓過點
.
(1)求橢圓方程;
(2)點、
是橢圓的上下頂點,點
為右頂點,記過點
、
、
的圓為⊙
,過點
作⊙
的切線
,求直線
的方程;
(3)過橢圓的上頂點作互相垂直的兩條直線分別交橢圓于另外一點、
,試問直線
是否經過定點,若是,求出定點坐標;若不是,說明理由.
(1);(2)
或
;(3)
.
解析試題分析:(1)由題目給出的條件直接求解的值,則可求出橢圓方程;(2)當所求直線斜率不存在時,其方程為
,符合題意;當直線斜率存在時,可設其斜率為
,寫出直線的點斜式方程,因為直線與圓相切,所以根據圓心到直線的距離等于圓的半徑可直接求得直線的斜率,從而得到方程;(3)由題意可知,兩直線的斜率都存在,設AP:
,代入橢圓的方程從而求出點
的坐標,同理再求出點
的坐標,從而可求出直線
的方程,由方程可知當
時,
恒成立,所以直線恒過定點
.
試題解析:
(1),則c=2, 又
,得
∴所求橢圓方程為 .
(2)M,⊙M:
,直線l斜率不存在時,
,
直線l斜率存在時,設為,
∴,解得
,
∴直線l為或
.
(3)顯然,兩直線斜率存在, 設AP:,
代入橢圓方程,得,解得點
,
同理得,直線PQ:
,
令x=0,得,∴直線PQ過定點
.
考點:本題考查了橢圓的標準方程,考查了橢圓的簡單幾何性質,考查了直線和圓錐曲線的關系,突出考查了數形結合、分類討論、函數與方程、等價轉化等數學思想方法.
科目:高中數學 來源: 題型:解答題
(13分)如圖,某隧道設計為雙向四車道,車道總寬20m,要求通行車輛限高5m,隧道全長2.5km,隧道的兩側是與地面垂直的墻,高度為3米,隧道上部拱線近似地看成半個橢圓。
(1)若最大拱高h為6 m,則隧道設計的拱寬是多少?
(2)若要使隧道上方半橢圓部分的土方工程 量最小,則應如何設計拱高h和拱寬?(已知:橢圓
+
=1的面積公式為S=
,柱體體積為底面積乘以高。)
(3)為了使隧道內部美觀,要求在拱線上找兩個點M、N,使它們所在位置的高度恰好是限高5m,現以M、N以及橢圓的左、右頂點為支點,用合金鋼板把隧道拱線部分連接封閉,形成一個梯形,若l=30m,梯形兩腰所在側面單位面積的鋼板造價是梯形頂部單位面積鋼板造價的倍,試確定M、N的位置以及
的值,使總造價最少。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的中心在原點
,離心率
,右焦點為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設橢圓的上頂點為,在橢圓
上是否存在點
,使得向量
與
共線?若存在,求直線
的方程;若不存在,簡要說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的焦點為
,
,且經過點
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設過的直線
與橢圓
交于
、
兩點,問在橢圓
上是否存在一點
,使四邊形
為平行四邊形,若存在,求出直線
的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓過點
,且離心率
。
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若直線與橢圓
相交于
,
兩點(
不是左右頂點),橢圓的右頂點為D,且滿足
,試判斷直線
是否過定點,若過定點,求出該定點的坐標;若不過定點,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C的中心為直角坐標系xOy的原點,焦點在s軸上,它的一個頂點到兩個焦點的距離分別是7和1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若P為橢圓C上的動點,M為過P且垂直于x軸的直線上的點,=λ,求點M的軌跡方程,并說明軌跡是什么曲線.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com