已知拋物線,
為坐標原點,動直線
與
拋物線交于不同兩點
(1)求證:·
為常數;
(2)求滿足的點
的軌跡方程。
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為
,其中左焦點
(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點A,B,且線段AB的中點M在圓x2+y2=1上,求m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,過點的兩直線與拋物線
相切于A、B兩點, AD、BC垂直于直線
,垂足分別為D、C.
(1)若,求矩形ABCD面積;
(2)若,求矩形ABCD面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,直線y=kx+b與橢圓交于A、B兩點,記△AOB的面積為S.
(1)求在k=0,0<b<1的條件下,S的最大值;
(2)當|AB|=2,S=1時,求直線AB的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線與橢圓
有公共焦點
,且橢圓過點
.
(1)求橢圓方程;
(2)點、
是橢圓的上下頂點,點
為右頂點,記過點
、
、
的圓為⊙
,過點
作⊙
的切線
,求直線
的方程;
(3)過橢圓的上頂點作互相垂直的兩條直線分別交橢圓于另外一點、
,試問直線
是否經過定點,若是,求出定點坐標;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系xOy中,點B與點A(-1,1)關于原點O對稱,P是動點,且直線AP與BP的斜率之積等于.
(1)求動點P的軌跡方程;
(2)設直線AP和BP分別與直線x=3交于點M,N,問:是否存在點P使得△PAB與△PMN的面積相等?若存在,求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C的中心在坐標原點,焦點在x軸上,橢圓C上的點到焦點距離的最大值為3,最小值為1.(1)求橢圓C的標準方程;(2)若直線l:與橢圓C相交于A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點。求證: 直線l過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C的中心在坐標原點,焦點在x軸上,橢圓C上的點到焦點距離的最大值為3,最小值為1.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線l:與橢圓C相交于A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點。求證: 直線l過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C的中心在原點,焦點F在軸上,離心率
,點
在橢圓C上.
(1)求橢圓的標準方程;
(2)若斜率為的直線
交橢圓
與
、
兩點,且
、
、
成等差數列,點M(1,1),求
的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com