日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
8.設函數f(x)=ex(3x-1)-ax+a,其中a<1,若有且只有一個整數x0使得f(x0)≤0,則a的取值范圍是(  )
A.$(\frac{2}{e},\frac{3}{4})$B.$[\frac{2}{e},\frac{3}{4})$C.$(\frac{2}{e},1)$D.$[\frac{2}{e},1)$

分析 設g(x)=ex(3x-1),h(x)=ax-a,對g(x)求導,將問題轉化為存在唯一的整數x0使得g(x0)在直線h(x)=ax-a的下方,求導數可得函數的極值,解g(-1)-h(-1)=-4e-1+2a≥0,求得a的取值范圍.

解答 解:設g(x)=ex(3x-1),h(x)=ax-a,
則g′(x)=ex(3x+2),
∴x∈(-∞,-$\frac{2}{3}$),g′(x)<0,g(x)單調遞減,
x∈(-$\frac{2}{3}$,+∞),g′(x)>0,g(x)單調遞增,
∴x=-$\frac{2}{3}$,取最小值-3e-$\frac{2}{3}$,
∴g(0)=-1<-a=h(0),
g(1)-h(1)=2e>0,
直線h(x)=ax-a恒過定點(1,0)且斜率為a,
∴g(-1)-h(-1)=-4e-1+2a>0,
∴a>$\frac{2}{e}$,
a<1,
∴a的取值范圍($\frac{2}{e}$,1).
故選:C.

點評 本題考查求函數的導數,利用導數判斷函數的單調性和極值問題,涉及轉化的思想,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

18.如圖,E,F分別是四面體OABC的邊OA,BC的中點,M為EF的中點,若$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,則下列向量中與$\overrightarrow{OM}$相等的向量是(  )
A.-$\frac{1}{4}$$\overrightarrow{a}$-$\frac{1}{4}$$\overrightarrow{b}$+$\frac{1}{4}$$\overrightarrow{c}$B.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$+$\frac{1}{4}$$\overrightarrow{c}$C.$\frac{1}{4}$$\overrightarrow{a}$-$\frac{1}{4}$$\overrightarrow{b}$+$\frac{1}{4}$$\overrightarrow{c}$D.-$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$+$\frac{1}{4}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.已知函數f(x)=a(x-lnx)+$\frac{2x-1}{{x}^{2}}$.
(1)當a=0時,求曲線y=f(x)在點P(1,1)處的切線方程;
(2)當a>0時,討論函數f(x)的單調性;
(3)若關于x的方程f(x)=$\frac{5}{x}$-$\frac{2}{{x}^{3}}$在x∈[2,3]上有解,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.若正整數N除以正整數m后的余數為n,則記為N=n( mod m),例如10=2(mod 4).如圖程序框圖的算法源于我國古代聞名中外的《中國剩余定理》.執行該程序框圖,則輸出的n等于(  )
A.20B.21C.22D.23

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.已知函數f(x)=ex-x+$\frac{1}{2}{x^2}(e$為自然對數的底數)g(x)=$\frac{1}{2}{x^2}$+ax+b(a∈R,b∈R).
(Ⅰ)求f(x)的極值;
(Ⅱ)若f(x)≥g(x),求b(a+1)的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.已知函數f(x)=f'(1)ex-1-f(0)x+$\frac{1}{2}{x^2}(f'(x)是f(x)$的導數,e為自然對數的底數)g(x)=$\frac{1}{2}{x^2}$+ax+b(a∈R,b∈R)
(Ⅰ)求f(x)的解析式及極值;
(Ⅱ)若f(x)≥g(x),求$\frac{b(a+1)}{2}$的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.某單位有500位職工,其中35歲以下的有125人,35~49歲的有280人,50歲以上的有95人,為了了解職工的健康狀態,采用分層抽樣的方法抽取一個容量為100的樣本,需抽取35歲以下職工人數為25.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.三位男同學兩位女同學站成一排,女同學不站兩端的排法總數為(  )
A.6B.36C.48D.120

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.如圖,在三棱錐S-ABC中,△ABC為直角三角形,且∠ACB=90°,SA⊥平面ABC,AD⊥SC.
求證:AD⊥平面SBC.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久va| 国产精品久久久久毛片软件 | 一级片在线观看网站 | 国产成人综合视频 | 欧美一区二 | 日韩精品无吗 | 精品成人在线观看 | 91免费电影 | 中文字幕欧美在线观看 | 国产精品嫩草99av在线 | 日韩亚洲精品在线观看 | 国产一区二区三区在线免费 | 亚洲麻豆精品 | 国产精品呻吟久久av图片 | 日韩爱爱免费视频 | 精品国产不卡一区二区三区 | 欧美精品1区2区 | 亚洲wuma | 亚洲香蕉在线观看 | 欧美日韩导航 | 欧美一级视频在线观看 | 在线xxx| 欧美视频在线观看一区 | 羞羞视频在线观看视频 | 九九国产 | 日韩免费精品视频 | www.国产欧美 | 国产精品一区二区三区免费 | 久久小视频 | 日韩欧美国产网站 | 91久久国产综合久久91精品网站 | 少妇黄色 | 国产精品一码二码三码在线 | 久久国产精品成人免费观看的软件 | 欧美伦理影院 | 视频二区 | 免费毛片网站 | 精品国产一区二区三区久久久蜜月 | 成人精品鲁一区一区二区 | 国产一区二区在线播放 | 日本视频网址 |