【題目】某中學高一年級共8個班,現從高一年級選10名同學組成社區服務小組,其中高一(1)班選取3名同學,其它各班各選取1名同學.現從這10名同學中隨機選取3名同學,到社區老年中心參加“尊老愛老”活動(每位同學被選到的可能性相同).
(1)求選出的3名同學來自不同班級的概率;
(2)設X為選出同學中高一(1)班同學的人數,求隨機變量X的分布列和數學期望.
科目:高中數學 來源: 題型:
【題目】對于函數,若存在實數對
,使得等式
對定義域中的任意
都成立,則稱函數
是“
型函數”.
(1)若函數是“
型函數”,且
,求出滿足條件的實數對
;
(2)已知函數.函數
是“
型函數”,對應的實數對
為
,當
時,
.若對任意
時,都存在
,使得
,試求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】十九大指出中國的電動汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實施一項將重塑全球汽車行業的計劃.2018年某企業計劃引進新能源汽車生產設備,通過市場分析,全年需投入固定成本2500萬元,每生產x(百輛),需另投入成本萬元,且
.由市場調研知,每輛車售價5萬元,且全年內生產的車輛當年能全部銷售完.
(1)求出2018年的利潤L(x)(萬元)關于年產量x(百輛)的函數關系式;(利潤=銷售額-成本)
(2)2018年產量為多少百輛時,企業所獲利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l:(2+m)x+(1﹣2m)y+4﹣3m=0.
(1)求證:不論m為何實數,直線l恒過一定點M;
(2)過定點M作一條直線l1,使夾在兩坐標軸之間的線段被M點平分,求直線l1的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓上的點到它的兩個焦的距離之和為
,以橢圓
的短軸為直徑的圓
經過這兩個焦點,點
,
分別是橢圓
的左、右頂點.
()求圓
和橢圓
的方程.
()已知
,
分別是橢圓
和圓
上的動點(
,
位于
軸兩側),且直線
與
軸平行,直線
,
分別與
軸交于點
,
.求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設命題p:函數f(x)=lg(x2+ax+1)的定義域為R;命題q:函數f(x)=x2﹣2ax﹣1在(﹣∞,﹣1]上單調遞減.
(1)若命題“p∨q”為真,“p∧q”為假,求實數a的取值范圍;
(2)若關于x的不等式(x﹣m)(x﹣m+5)<0(m∈R)的解集為M;命題p為真命題時,a的取值集合為N.當M∪N=M時,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司推廣線下分店,計劃在S市的A區開設分店,為了確定在該區開設分店的個數,該公司對該市已開設分店的其他區的數據作了初步處理后得到下列表格.記x表示在各區開設分店的個數,y表示這個x個分店的年收入之和.
(1)該公司已經過初步判斷,可用線性回歸模型擬合y與x的關系,求y關于x的線性回歸方程
(2)假設該公司在A區獲得的總年利潤z(單位:百萬元)與x,y之間的關系為,請結合(1)中的線性回歸方程,估算該公司應在A區開設多少個分店時,才能使A區平均每個分店的年利潤最大?
(參考公式:,其中
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐的底面
為菱形,
,
底面
,
,E為
的中點.
(1)求證:平面
;
(2)求三棱錐的體積
;
(3)在側棱上是否存在一點M,滿足
平面
,若存在,求
的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐S-ABCD中,底面ABCD為菱形,∠BAD=60°,平面SAD⊥平面ABCD,SA=SD,E,P,Q分別是棱AD,SC,AB的中點.
(Ⅰ)求證:PQ∥平面SAD;
(Ⅱ)求證:AC⊥平面SEQ;
(Ⅲ)如果SA=AB=2,求三棱錐S-ABC的體積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com