【題目】如圖,AB是圓O的直徑,弦CD⊥AB于點M,點E是CD延長線上一點,AB=10,CD=8,3ED=4OM,EF切圓O于F,BF交CD于點G.
(1)求證:EF=EG;
(2)求線段MG的長.
科目:高中數學 來源: 題型:
【題目】如圖所示,正方體ABCD﹣A′B′C′D′的棱長為1,E、F分別是棱是AA′,CC′的中點,過直線EF的平面分別與棱BB′,DD′交于M,N,設BM=x,x∈[0,1],給出以下四種說法:
(1)平面MENF⊥平面BDD′B′;
(2)當且僅當x=時,四邊形MENF的面積最小;
(3)四邊形MENF周長L=f(x),x∈[0,1]是單調函數;
(4)四棱錐C′﹣MENF的體積V=h(x)為常函數,以上說法中正確的為( )
A. (2)(3) B. (1)(3)(4) C. (1)(2)(4) D. (1)(2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知菱形ABCD的邊長為6,∠ABD=30°,點E、F分別在邊BC、DC上,BC=2BE,CD=λCF.若 =﹣9,則λ的值為( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某同學在研究函數(x∈R)時,分別給出下面幾個結論:
①函數f(x)是奇函數;②函數f(x)的值域為(-1,1);③函數f(x)在R上是增函數;其中正確結論的序號是
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在邊長為2的正方形中,
,
分別為
,
的中點,
為
的中點,沿
,
,
將正方形折起,使
,
,
重合于點
,在構成的三棱錐
中,下列結論錯誤的是
A. 平面
B. 三棱錐的體積為
C. 直線與平面
所成角的正切值為
D. 異面直線與
所成角的余弦值為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f1(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的一段圖象過點(0,1),如圖所示.
(1)求函數f1(x)的表達式;
(2)將函數y=f1(x)的圖象向右平移個單位,得函數y=f2(x)的圖象,求y=f2(x)的最大值,并求出此時自變量x的集合.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓,直線
(1)求證:直線過定點;
(2)求直線被圓
所截得的弦長最短時
的值;
(3)已知點,在直線MC上(C為圓心),存在定點N(異于點M),滿足:對于圓C上任一點P,都有
為一常數,試求所有滿足條件的點N的坐標及該常數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com