日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知向量:=(cosωx-sinωx,2sinωx),(其中ω>0),函數f(x)=,若f(x)相鄰兩對稱軸間的距離為
(1)求ω的值,并求f(x)的最大值及相應x的集合;
(2)在△ABC中,a,b,c分別是A,B,C所對的邊,△ABC的面積S=5,b=4,f(A)=1,求邊a的長.
【答案】分析:(1)先根據二倍角公式和兩角和與差的正弦公式進行化簡,再由最小正周期得到w的值,從而可確定函數f(x)的解析式,然后再由正弦函數的最值可求得f(x)的最大值及相應x的集合.
(2)將A代入可確定A的值,再由三角形的面積公式可得到c的值,最后根據余弦定理可求得a的值.
解答:解:(1)∵f(x)=cos2ωx-sin2ωx+2sin2ωx
=
又題意可得T=π,∴ω=1,∴f(x)=2sin
=1時,f(x)有最大值為2,
∴x∈
(2)∵f(A)=2sin(2A+)=1
∴sin(2A+)=
∵0<A<π
∴2A+
S=bcsin=5c=5
由余弦定理得:a2=16+25-2×4×5cos=21∴a=
點評:本題主要考查二倍角公式、兩角和與差的公式的應用,考查正弦函數的基本性質--最值、周期性.三角函數是高考的重點內容,一般以基礎題為主,要強化基礎的夯實.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知向量
OA
=(λsinα,λcosα)
OB
=(cosβ,sinβ)
,且α+β=4.
(1)求
OA
,
OB
的夾角θ的大小;
(2)求|
AB
|
的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(1,cos(ωx-
π
6
))
,
b
=(2,2sin(ωx-
π
6
))
,其中ω為常數,且ω>0.
(1)若ω=1,且
a
b
,求tanx的值;
(2)設函數f(x)=
a
b
-2
,若f(x)的最小正周期為π,求f(x)在x∈[0,
π
2
]
時的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(sinθ,cosθ-2sinθ),
b
=(1,-3)
,若
a
b
,則tanθ的值等于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(sinθ,cosθ-2sinθ),
b
=(1,2)

(1)若
a
b
,求tanθ的值;
(2)若|
a
|=|
b
|,(0<θ<π)
,求θ的值;
(3)設
c
=(1,1+2sinθ)
,若f(θ)=|
a
+
c
|2+sin2θ
,求f(θ)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(2sinθ,-cosθ),θ∈R
,
b
=(2,1)
,向量
a
,
b
不能作為平面的一組基底時,則θ=
kπ-
π
4
,k∈Z
kπ-
π
4
,k∈Z

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产激情在线观看视频 | 欧美日韩精品免费 | 国产99久久精品一区二区永久免费 | 国产一区国产二区在线观看 | 国产精品视频入口 | 欧美亚洲国产精品 | 国产欧美日本 | 宅宅久久 | 国产一级免费 | 国产精品久久久久久吹潮 | 精品久久久久久久 | 91精品久久久久久久久久 | 99久久精品毛片免费 | 日本在线观看视频一区 | 在线免费观看激情视频 | 精品久久久久一区二区国产 | 久久av一区二区三区 | 色呦呦免费观看 | 中文字幕自拍偷拍 | 热久久久 | 91日日| 久久人人爽人人爽 | 一级全黄少妇性色生活片毛片 | 日韩高清国产一区在线 | 亚洲狠狠久久综合一区77777 | 日韩艹逼视频 | 亚洲精品99久久久久中文字幕 | 国产成人免费视频 | 一区二区精品在线 | 91麻豆精品一二三区在线 | 亚洲三级电影 | 91国内产香蕉 | 日本色一区 | av网站网址 | 成人免费网站视频 | 久久久久9999亚洲精品 | 中文字幕在线观看第一页 | 成人免费福利视频 | 中文字幕视频在线观看 | 欧美暴操 | 日韩中文字幕a |