日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)= ,若方程f(x)=a有四個不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 則x3(x1+x2)+ 的取值范圍是(
A.(﹣1,+∞)
B.(﹣1,1]
C.(﹣∞,1)
D.[﹣1,1)

【答案】B
【解析】解:作函數f(x)= ,的圖象如下,

由圖可知,x1+x2=﹣2,x3x4=1;1<x4≤2;

故x3(x1+x2)+ =﹣ +x4

其在1<x4≤2上是增函數,

故﹣2+1<﹣ +x4≤﹣1+2;

即﹣1<﹣ +x4≤1;

故選B.

作函數f(x)= 的圖象如下,由圖象可得x1+x2=﹣2,x3x4=1;1<x4≤2;從而化簡x3(x1+x2)+ ,利用函數的單調性求取值范圍.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=Asin(ωx+φ)(其中x∈R,A>0,ω>0, )的部分圖象如圖所示
(Ⅰ)求A,ω,φ的值;
(Ⅱ)求f(x)的單調增區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】橢圓H: +y2=1(a>1),原點O到直線MN的距離為 ,其中點M(0,﹣1),點N(a,0).
(1)求該橢圓H的離心率e;
(2)經過橢圓右焦點F2的直線l和該橢圓交于A,B兩點,點C在橢圓上,O為原點, 若 = + ,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 f(x)=ex(ex﹣a)﹣a2x.
(1)討論 f(x)的單調性;
(2)若f(x)≥0,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于區間,若函數同時滿足:①上是單調函數;②函數 的值域是,則稱區間為函數保值區間

求函數的所有保值區間

函數是否存在保值區間?若存在,求出的取值范圍;若不存在,說明理由

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數f(x)=lnx﹣x﹣mx在區間[1,e2]內有唯一的零點,則實數m的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知U={y|y=log2x,x>1},P={y|y= ,x>2},則UP=(
A.[ ,+∞)
B.(0,
C.(0,+∞)
D.(﹣∞,0)∪( ,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 .

(1)當時,求函數的值域;

(2)如果對任意的不等式恒成立,求實數的取值范圍;

(3)是否存在實數使得函數的最大值為0,若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}中,a1=1,an+1= (n∈N*).
(1)求證:{ + }是等比數列,并求{an}的通項公式an
(2)數列{bn}滿足bn=(3n﹣1) an , 數列{bn}的前n項和為Tn , 若不等式(﹣1)nλ<Tn+ 對一切n∈N*恒成立,求λ的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 精品av | 久久大陆 | 欧美久久a | 好硬好涨老师受不了了视频 | 亚洲色图自拍 | 欧美精品一二三 | 亚洲三区视频 | 国产精品日韩欧美一区二区三区 | 日韩av午夜 | 综合二区 | 国产精品无码永久免费888 | 91av在线不卡| 久草资源在线视频 | 国产精品欧美久久久久一区二区 | 日韩一级av毛片 | 国产区 在线观看 | 一个人看的www日本高清视频 | 中文字幕av一区二区三区 | 天堂在线一区二区 | xxxx欧美| 香蕉视频在线播放 | 精品中文久久 | 一级篇| 国产精品久久久久久亚洲调教 | 男女网站在线观看 | 久久99精品久久久久久琪琪 | 黄色国产一级视频 | 狠狠色综合网站久久久久久久 | 欧美专区在线观看 | 久久久夜色 | 国产日韩亚洲欧美 | 色综合一区| 日韩在线欧美 | 夜夜骑日日操 | 亚洲国产aⅴ成人精品无吗 91精品国产一区二区 | 精品一区二区三区三区 | 成人精品视频在线观看 | 久久久精品一区二区 | 中国一级特黄毛片大片 | 中文字幕亚洲一区二区三区 | 免费黄在线看 |