【題目】古印度“漢諾塔問題”:一塊黃銅平板上裝著三根金銅石細(xì)柱,其中細(xì)柱
上套著個大小不等的環(huán)形金盤,大的在下、小的在上.將這些盤子全部轉(zhuǎn)移到另一根柱子上,移動規(guī)則如下:一次只能將一個金盤從一根柱子轉(zhuǎn)移到另外一根柱子上,不允許將較大盤子放在較小盤子上面.若
柱上現(xiàn)有
個金盤(如圖),將
柱上的金盤全部移到
柱上,至少需要移動次數(shù)為( )
A.B.
C.
D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,直線l:,P為直線l上一點,且點P在極軸上方
以OP為一邊作正三角形
逆時針方向
,且
面積為
.
求Q點的極坐標(biāo);
求
外接圓的極坐標(biāo)方程,并判斷直線l與
外接圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九大提出,堅決打贏脫貧攻堅戰(zhàn),某幫扶單位為幫助定點扶貧村真脫貧,堅持扶貧同扶智相結(jié)合,幫助貧困村種植蜜柚,并利用電商進行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹上隨機摘下了100個蜜柚進行測重,其質(zhì)量分別在,
,
,
,
,
(單位:克)中,其頻率分布直方圖如圖所示.
(1)按分層抽樣的方法從質(zhì)量落在,
的蜜柚中抽取5個,再從這5個蜜柚中隨機抽取2個,求這2個蜜柚質(zhì)量均小于2000克的概率;
(2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有5000個蜜柚等待出售,某電商提出兩種收購方案:
A. 所有蜜柚均以40元/千克收購;
B. 低于2250克的蜜柚以60元/個收購,高于或等于2250克的以80元/個收購.
請你通過計算為該村選擇收益最好的方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年,依托用戶碎片化時間的娛樂需求、分享需求以及視頻態(tài)的信息負(fù)載力,短視頻快速崛起;與此同時,移動閱讀方興未艾,從側(cè)面反應(yīng)了人們對精神富足的一種追求,在習(xí)慣了大眾娛樂所帶來的短暫愉悅后,部分用戶依舊對有著傳統(tǒng)文學(xué)底蘊的嚴(yán)肅閱讀青睞有加.
某讀書APP抽樣調(diào)查了非一線城市M和一線城市N各100名用戶的日使用時長(單位:分鐘),繪制成頻率分布直方圖如下,其中日使用時長不低于60分鐘的用戶記為“活躍用戶”.
(1)請?zhí)顚懸韵?/span>列聯(lián)表,并判斷是否有99.5%的把握認(rèn)為用戶活躍與否與所在城市有關(guān)?
活躍用戶 | 不活躍用戶 | 合計 | |
城市M | |||
城市N | |||
合計 |
(2)以頻率估計概率,從城市M中任選2名用戶,從城市N中任選1名用戶,設(shè)這3名用戶中活躍用戶的人數(shù)為,求
的分布列和數(shù)學(xué)期望.
(3)該讀書APP還統(tǒng)計了2018年4個季度的用戶使用時長y(單位:百萬小時),發(fā)現(xiàn)y與季度()線性相關(guān),得到回歸直線為
,已知這4個季度的用戶平均使用時長為12.3百萬小時,試以此回歸方程估計2019年第一季度(
)該讀書APP用戶使用時長約為多少百萬小時.
附:,其中
.
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以
為極點,
軸的正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
;直線
的參數(shù)方程為
(
為參數(shù)),直線
與曲線
分別交于
,
兩點.
(1)寫出曲線的直角坐標(biāo)方程和直線
的普通方程;
(2)若點的極坐標(biāo)為
,
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題:
①中,
是
成立的充要條件;
②當(dāng)時,有
;
③已知 是等差數(shù)列
的前n項和,若
,則
;
④若函數(shù)為
上的奇函數(shù),則函數(shù)
的圖象一定關(guān)于點
成中心對稱.其中所有正確命題的序號為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校進行了一次創(chuàng)新作文大賽,共有100名同學(xué)參賽,經(jīng)過評判,這100名參賽者的得分都在之間,其得分的頻率分布直方圖如圖,則下列結(jié)論錯誤的是( )
A.得分在之間的共有40人
B.從這100名參賽者中隨機選取1人,其得分在的概率為0.5
C.估計得分的眾數(shù)為55
D.這100名參賽者得分的中位數(shù)為65
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
(
)的離心率為
,且橢圓
的一個焦點與拋物線
的焦點重合.過點
的直線
交橢圓
于
,
兩點,
為坐標(biāo)原點.
(1)若直線過橢圓
的上頂點,求
的面積;
(2)若,
分別為橢圓
的左、右頂點,直線
,
,
的斜率分別為
,
,
,求
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com