【題目】已知冪函數f(x)=(m2﹣m﹣1)x﹣5m﹣3在(0,+∞)上是增函數,又g(x)=loga (a>1).
(1)求函數g(x)的解析式;
(2)當x∈(t,a)時,g(x)的值域為(1,+∞),試求a與t的值.
【答案】
(1)解:∵f(x)是冪函數,且在(0,+∞)上是增函數,
∴ 解得m=﹣1,
∴
(2)解:由 >0可解得x<﹣1,或x>1,
∴g(x)的定義域是(﹣∞,﹣1)∪(1,+∞).
又a>1,x∈(t,a),可得t≥1,
設x1,x2∈(1,+∞),且x1<x2,于是x2﹣x1>0,x1﹣1>0,x2﹣1>0,
∴ >0,
∴ .
由 a>1,有 ,即g(x)在(1,+∞)上是減函數.
又g(x)的值域是(1,+∞),
∴ 得
,可化為
,
解得 ,
∵a>1,∴ ,
綜上,
【解析】(1)利用冪函數的單調性以及性質,列出關系式,求出m,即可求解函數g(x)的解析式;(2)求出g(x)的定義域.結合a>1,x∈(t,a),可得t≥1,設x1 , x2∈(1,+∞),判斷g(x)在(1,+∞)上是減函數,通過g(x)的值域列出方程 ,即可求解a的值.
【考點精析】認真審題,首先需要了解函數的最值及其幾何意義(利用二次函數的性質(配方法)求函數的最大(。┲;利用圖象求函數的最大(。┲;利用函數單調性的判斷函數的最大(。┲).
科目:高中數學 來源: 題型:
【題目】某職稱晉級評定機構對參加某次專業技術考試的100人的成績進行了統計,繪制了頻率分布直方圖(如圖所示),規定80分及以上者晉級成功,否則晉級失敗(滿分為100分).
晉級成功 | 晉級失敗 | 合計 | |
男 | 16 | ||
女 | 50 | ||
合計 |
(Ⅰ)求圖中的值;
(Ⅱ)根據已知條件完成下面列聯表,并判斷能否有85%的把握認為“晉級成功”與性別有關?
(Ⅲ)將頻率視為概率,從本次考試的所有人員中,隨機抽取4人進行約談,記這4人中晉級失敗的人數為,求
的分布列與數學期望
.
(參考公式:,其中
)
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓錐曲線 為參數)和定點
F1 , F2是圓錐曲線的左右焦點。
(1)求經過點F2且垂直于直線AF1的直線l的參數方程;
(2)以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,求直線AF2的極坐標方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】解答
(1)設全集為R,A={x|3<x<7},B={x|4<x<10},求R(A∪B)及(RA)∩B.
(2)C={x|a﹣4≤x≤a+4},且A∩C=A,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線 (
為參數),
.
(1)當 時,求
與
的交點坐標;
(2)以坐標原點 為圓心的圓與
相切,切點為
,
為
的中點,當
變化時,求
點的軌跡的參數方程,并指出它是什么曲線.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓的左、右焦點分別為
,且離心率為
,點
為橢圓上一動點,
內切圓面積的最大值為
.
(1)求橢圓的方程;
(2)設橢圓的左頂點為,過右焦點
的直線
與橢圓相交于
兩點,連接
并延長分別交直線
于
兩點,以
為直徑的圓是否恒過定點?若是,請求出定點坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業生產甲、乙兩種產品,已知生產每噸甲產品要用A原料3噸,B原料2噸,生產每噸乙產品要用A原料1噸,B原料3噸。銷售每噸甲產品可獲得利潤5萬元,每噸乙產品可獲得利潤3萬元,該企業在一個生產周期內消耗A原料不超過13噸,B原料不超過18噸,那么該企業可獲得最大利潤是___________萬元
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com