【題目】設函數f(x)=|x﹣a|+|x+b|,ab>0.
(1)當a=1,b=1時,求不等式f(x)<3的解集;
(2)若f(x)的最小值為2,求的最小值.
【答案】(1){x|}(2)
【解析】
(1)原不等式等價于|x﹣1|+|x+1|<3,然后對x分類去絕對值,化為關于x的一元一次不等式求解,取并集得答案;
(2)f(x)=|x﹣a|+|x+b|≥|b+a|,當且僅當(x﹣a)(x+b)≤0時等號成立.可得f(x)的最小值為|b+a|=2.結合ab>0,得|b+a|=|a|+|b|=2,則,展開后利用基本不等式求最值.
(1)原不等式等價于|x﹣1|+|x+1|<3,
當x≥1時,可得x﹣1+x+1<3,解得1≤x;
當﹣1<x<1時,可得﹣x+1+x+1<3,得2<3成立;
當x≤﹣1時,可得﹣x+1﹣x﹣1<3,解得x≤﹣1.
綜上所述,原不等式的解集為{x|};
(2)f(x)=|x﹣a|+|x+b|≥|b+a|,當且僅當(x﹣a)(x+b)≤0時等號成立.
∴f(x)的最小值為|b+a|,即|b+a|=2.
又∵ab>0,∴|b+a|=|a|+|b|=2,
∴
.
當且僅當時,等號成立,
∴的最小值為
.
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,橢圓
與
軸交于
兩點,且
.
(1)求橢圓的方程;
(2)設點是橢圓
上的一個動點,且直線
與直線
分別交于
兩點.是否存在點
使得以
為直徑的圓經過點
?若存在,求出點
的橫坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某電動車生產企業,上年度生產電動車的投入成本為1萬元/輛,出廠價為1.2萬元/輛,年銷售量為1000輛.本年度為適應市場需求,計劃提高產品檔次,適度增加投入成本.若每輛車投入成本增加的比例為,則出廠價相應提高的比例為
,且當
不超過0.5時,預計年銷售量增加的比例為
,而當
超過0.5時,預計年銷售量不變.已知年利潤=(出廠價-投入成本)×年銷售量.則本年度預計的年利潤
與投入成本增加的比例
的關系式為______;為使本年度利潤比上年有所增加,投入成本增加的比例
的取值范圍為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,側面ABB1A1是菱形,且CA=CB1.
(1)證明:面CBA1⊥面CB1A;
(2)若∠BAA1=60°,A1C=BC=BA1,求二面角C﹣A1B1﹣C1的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知⊙M過點,且與⊙N:
內切,設⊙M的圓心M的軌跡為曲線C.
(1)求曲線C的方程:
(2)設直線l不經過點且與曲線C相交于P,Q兩點.若直線PB與直線QB的斜率之積為
,判斷直線l是否過定點,若過定點,求出此定點坐標;若不過定點,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給定橢圓,稱圓心在原點
,半徑為
的圓是橢圓
的“準圓”.若橢圓
的一個焦點為
,其短軸上的一個端點到
的距離為
.
(1)求橢圓的方程和其“準圓”方程;
(2)點是橢圓
的“準圓”上的動點,過點
作橢圓的切線
交“準圓”于點
.
①當點為“準圓”與
軸正半軸的交點時,求直線
的方程并證明
;
②求證:線段的長為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某企業近3年的前7個月的月利潤(單位:百萬元)如下面的折線圖所示:
(1)試問這3年的前7個月中哪個月的月平均利潤最高?
(2)通過計算判斷這3年的前7個月的總利潤的發展趨勢;
(3)試以第3年的前4個月的數據(如下表),用線性回歸的擬合模式估測第3年8月份的利潤.
月份x | 1 | 2 | 3 | 4 |
利潤y(單位:百萬元) | 4 | 4 | 6 | 6 |
相關公式: ,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com