【題目】已知單調(diào)遞增的等比數(shù)列滿(mǎn)足
,且
是
,
的等差中項(xiàng).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若數(shù)列滿(mǎn)足
,求數(shù)列
的通項(xiàng)公式;
(Ⅲ)在(Ⅱ)的條件下,設(shè),問(wèn)是否存在實(shí)數(shù)
使得數(shù)列
(
)是單調(diào)遞增數(shù)列?若存在,求出
的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
【答案】(Ⅰ);(Ⅱ)
; (Ⅲ)
.
【解析】試題分析:
(Ⅰ)由題意求得,
,∴
;
(Ⅱ)利用題意錯(cuò)位相減可得
;
(Ⅲ)題中不等式轉(zhuǎn)化為,分類(lèi)討論當(dāng)
為大于或等于4的偶數(shù),當(dāng)
為大于或等于3的奇數(shù)時(shí),兩種情況可得
的取值范圍是
.
試題解析:
(Ⅰ)設(shè)此等比數(shù)列為,
,
,
,…,其中
,
.
由題意知: ,①
.②
②①得
,
即,解得
或
.
∵等比數(shù)列單調(diào)遞增,∴
,
,∴
;
(Ⅱ)由(Ⅰ)可知(
),
由(
),
得(
),
故,即
(
),
當(dāng)時(shí),
,
,∴
;
(Ⅲ)∵,
∴當(dāng)時(shí),
,
,
依據(jù)題意,有,
即,
①當(dāng)為大于或等于4的偶數(shù)時(shí),有
恒成立,
又隨
增大而增大,
則當(dāng)且僅當(dāng)時(shí),
,故
的取值范圍為
;
②當(dāng)為大于或等于3的奇數(shù)時(shí),有
恒成立,且僅當(dāng)
時(shí),
,故
的取值范圍為
;
又當(dāng)時(shí),由
,得
,
綜上可得,所求的取值范圍是
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}是首項(xiàng)為a1= ,公比q=
的等比數(shù)列,設(shè)bn+2=3
an(n∈N*),數(shù)列{cn}滿(mǎn)足cn=anbn .
(1)求證:{bn}是等差數(shù)列;
(2)求數(shù)列{cn}的前n項(xiàng)和Sn;
(3)若cn≤ m2+m﹣1對(duì)一切正整數(shù)n恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的首項(xiàng)a1=a,Sn是數(shù)列{an}的前n項(xiàng)和,且滿(mǎn)足:Sn2=3n2an+Sn﹣12 , an≠0,n≥2,n∈N* .
(1)若數(shù)列{an}是等差數(shù)列,求a的值;
(2)確定a的取值集合M,使a∈M時(shí),數(shù)列{an}是遞增數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(
)
(Ⅰ)討論的單調(diào)性;
(Ⅱ)證明:當(dāng)時(shí),函數(shù)
(
)有最小值.記
的最小值為
,求
的值域;
(Ⅲ)若存在兩個(gè)不同的零點(diǎn)
,
(
),求
的取值范圍,并比較
與0的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,梯形中,
,
,
,
,
和
分別為
與
的中點(diǎn),對(duì)于常數(shù)
,在梯形
的四條邊上恰好有8個(gè)不同的點(diǎn)
,使得
成立,則實(shí)數(shù)
的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,M和N分別為BC、C1C的中點(diǎn),那么異面直線(xiàn)MN與AC所成的角等于( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(3,3)、B(5,2)到直線(xiàn)l的距離相等,且直線(xiàn)l經(jīng)過(guò)兩直線(xiàn)l1:3x﹣y﹣1=0和l2:x+y﹣3=0的交點(diǎn),求直線(xiàn)l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)點(diǎn)A(a,a)可作圓x2+y2﹣2ax+a2+2a﹣3=0的兩條切線(xiàn),則實(shí)數(shù)a的取值范圍為( )
A.a<﹣3或a>1
B.a<
C.﹣3<a<1 或a>
D.a<﹣3或1<a<
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校從高一年級(jí)期末考試的學(xué)生中抽出60名學(xué)生,其成績(jī)(均為整數(shù))的頻率分布直方圖如圖所示:
(1)依據(jù)頻率分布直方圖,估計(jì)這次考試的及格率(60分及以上為及格)和平均分;
(2)已知在[90,100]段的學(xué)生的成績(jī)都不相同,且都在94分以上,現(xiàn)用簡(jiǎn)單隨機(jī)抽樣方法,從95,96,97,98,99,100這6個(gè)數(shù)中任取2個(gè)數(shù),求這2個(gè)數(shù)恰好是兩個(gè)學(xué)生的成績(jī)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com