【題目】設函數有兩個極值點
,
,且
.
()求
的取值范圍,并討論
的單調性.
()證明:
.
【答案】(1)見解析;(2)見解析.
【解析】試題分析 : (1)先確定函數的定義域然后求導數,由題意知
,
是方程
的兩個均大于-1的不相等的實根,建立不等關系解之即可,在函數的定義域內解不等式
和
,求出單調區間;
(2)是方程
的根,將
用
表示,消去
得到關于
的函數,研究函數的單調性求出函數的最大值,即可證得不等式.
試題解析 :
()由題意知,函數
的定義域是
,
,
且有兩個不同的實數根
,
,故
的判別式
,即
,且
,
,①
又,故
.因此
的取值范圍是
.
當變化時
與
的變化情況如下表:
極大值 | 極小值 |
因此在區間
和
是增函數,在
上是減函數.
()由題意和①知,
,
,
于是.
設函數,則
.
當時,
,
當時,
,故
在
上是增函數.
于是,當,
.因此
.
科目:高中數學 來源: 題型:
【題目】已知直線y=x+b與函數f(x)=ln x的圖象交于兩個不同的點A,B,其橫坐標分別為x1,x2,且x1<x2.
(1)求b的取值范圍;
(2)當x2≥2時,證明x1·<2.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2018湖北七市(州)教研協作體3月高三聯考】已知橢圓:
的左頂點為
,上頂點為
,直線
與直線
垂直,垂足為
點,且點
是線段
的中點.
(I)求橢圓的方程;
(II)如圖,若直線:
與橢圓
交于
,
兩點,點
在橢圓
上,且四邊形
為平行四邊形,求證:四邊形
的面積
為定值.
【答案】(I);(II)
【解析】試題分析:(1)根據題意可得,
故斜率為
,由直線
與直線
垂直,可得
,因為點
是線段
的中點,∴點
的坐標是
,
代入直線得,連立方程即可得
,
;(2)∵四邊形
為平行四邊形,∴
,設
,
,
,∴
,得
,將
點坐標代入橢圓
方程得
,
點到直線
的距離為
,利用弦長公式得EF,則平行四邊形
的面積為
.
解析:(1)由題意知,橢圓的左頂點
,上頂點
,直線
的斜率
,
得,
因為點是線段
的中點,∴點
的坐標是
,
由點在直線
上,∴
,且
,
解得,
,
∴橢圓的方程為
.
(2)設,
,
,
將代入
消去
并整理得
,
則,
,
,
∵四邊形為平行四邊形,∴
,
得,將
點坐標代入橢圓
方程得
,
點到直線
的距離為
,
,
∴平行四邊形的面積為
.
故平行四邊形的面積
為定值
.
【題型】解答題
【結束】
21
【題目】已知函數,
.
(1)當時,討論函數
的單調性;
(2)當時,求證:函數
有兩個不相等的零點
,
,且
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線的極坐標方程是
,以極點為原點,極軸為
軸正方向建立平面直角坐標系,曲線
的直角坐標方程是
(
為參數).
(Ⅰ)將曲線的參數方程化為普通方程;
(Ⅱ)求曲線與曲線
交點的極坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是拋物線
上的兩個點,點
的坐標為
,直線
的斜率為
.設拋物線
的焦點在直線
的下方.
(Ⅰ)求k的取值范圍;
(Ⅱ)設C為W上一點,且,過
兩點分別作W的切線,記兩切線的交點為
. 判斷四邊形
是否為梯形,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線
的極坐標方程為
,過點
的直線
的參數方程為
(
為參數),直線
與曲線
相交于
兩點.
(1)寫出曲線的直角坐標方程和直線
的普通方程;
(2)若,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校運動會的立定跳遠和30秒跳繩兩個單項比賽分成預賽和決賽兩個階段.下表為10名學生的預賽成績,其中有三個數據模糊.
學生序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
立定跳遠(單位:米) | 1.96 | 1.92 | 1.82 | 1.80 | 1.78 | 1.76 | 1.74 | 1.72 | 1.68 | 1.60 |
30秒跳繩(單位:次) | 63 | a | 75 | 60 | 63 | 72 | 70 | a1 | b | 65 |
在這10名學生中,進入立定跳遠決賽的有8人,同時進入立定跳遠決賽和30秒跳繩決賽的有6人,則
(A)2號學生進入30秒跳繩決賽
(B)5號學生進入30秒跳繩決賽
(C)8號學生進入30秒跳繩決賽
(D)9號學生進入30秒跳繩決賽
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com