【題目】已知函數(shù),
.
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)在
上的最大值為1,求實(shí)數(shù)
的取值集合.
【答案】(1)見解析;(2).
【解析】試題分析:(1)對函數(shù)求導(dǎo)得
,對
分類討論,結(jié)合導(dǎo)數(shù)的性質(zhì),即可得到函數(shù)
的單調(diào)性;(2)函數(shù)
在
上的最大值為1等價(jià)于對任意
,
恒成立,即
對任意
恒成立,變形可得
,分別對
,
及
討論,即可求得實(shí)數(shù)
的取值集合.
試題解析:(1).
當(dāng)時(shí),
在
上單調(diào)遞減;
當(dāng)時(shí),
,即
在
上單調(diào)遞減;
當(dāng)時(shí),
.
∴時(shí),
,
在
上遞減;
時(shí),
,
在
上遞增;
時(shí),
,
在
上遞減;
綜上,當(dāng)時(shí),
在
上單調(diào)遞減;
當(dāng)時(shí),
在
上遞減;
在上遞增;
上遞減.
(2)∵函數(shù)在
上的最大值為1
∴對任意,
恒成立,即
對任意
恒成立,變形可得.
當(dāng)時(shí),
即
,可得
;
當(dāng)時(shí),
.則
令,則
.
當(dāng)時(shí),
,當(dāng)
時(shí),
.
因此,,
∴.
當(dāng)時(shí),
.則
令,則
.
當(dāng)時(shí),
,
因此,,
∴.
綜上,.
∴的取值集合為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)當(dāng),
時(shí),證明:
(其中
為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
.
(Ⅰ)函數(shù)的圖象能否與
軸相切?若能,求出實(shí)數(shù)
,若不能,請說明理由;
(Ⅱ)求最大的整數(shù),使得對任意
,不等式
恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線
的參數(shù)方程是
(
為參數(shù)),以
為極點(diǎn),
軸的正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
,且直線
與曲線
交于
兩點(diǎn).
(Ⅰ)求直線的普通方程及曲線
的直角坐標(biāo)方程;
(Ⅱ)把直線與
軸的交點(diǎn)記為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家銷售公司擬各招聘一名產(chǎn)品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產(chǎn)品提成1元; 乙公司規(guī)定底薪120元,日銷售量不超過45件沒有提成,超過45件的部分每件提成8元.
(I)請將兩家公司各一名推銷員的日工資 (單位: 元) 分別表示為日銷售件數(shù)
的函數(shù)關(guān)系式;
(II)從兩家公司各隨機(jī)選取一名推銷員,對他們過去100天的銷售情況進(jìn)行統(tǒng)計(jì),得到如下條形圖。若記甲公司該推銷員的日工資為,乙公司該推銷員的日工資為
(單位: 元),將該頻率視為概率,請回答下面問題:
某大學(xué)畢業(yè)生擬到兩家公司中的一家應(yīng)聘推銷員工作,如果僅從日均收入的角度考慮,請你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說明理由.
【答案】(I)見解析; (Ⅱ)見解析.
【解析】分析:(I)依題意可得甲公司一名推銷員的工資與銷售件數(shù)的關(guān)系是一次函數(shù)的關(guān)系式,而乙公司是分段函數(shù)的關(guān)系式,由此解得;(Ⅱ)分別根據(jù)條形圖求得甲、乙公司一名推銷員的日工資的分布列,從而可分別求得數(shù)學(xué)期望,進(jìn)而可得結(jié)論.
詳解:(I)由題意得,甲公司一名推銷員的日工資 (單位:元) 與銷售件數(shù)
的關(guān)系式為:
.
乙公司一名推銷員的日工資 (單位: 元) 與銷售件數(shù)
的關(guān)系式為:
(Ⅱ)記甲公司一名推銷員的日工資為 (單位: 元),由條形圖可得
的分布列為
122 | 124 | 126 | 128 | 130 | |
0.2 | 0.4 | 0.2 | 0.1 | 0.1 |
記乙公司一名推銷員的日工資為 (單位: 元),由條形圖可得
的分布列為
120 | 128 | 144 | 160 | |
0.2 | 0.3 | 0.4 | 0.1 |
∴
∴僅從日均收入的角度考慮,我會(huì)選擇去乙公司.
點(diǎn)睛:求解離散型隨機(jī)變量的數(shù)學(xué)期望的一般步驟為:
第一步是“判斷取值”,即判斷隨機(jī)變量的所有可能取值,以及取每個(gè)值所表示的意義;
第二步是“探求概率”,即利用排列組合,枚舉法,概率公式,求出隨機(jī)變量取每個(gè)值時(shí)的概率;
第三步是“寫分布列”,即按規(guī)范形式寫出分布列,并注意用分布列的性質(zhì)檢驗(yàn)所求的分布列或某事件的概率是否正確;
第四步是“求期望值”,一般利用離散型隨機(jī)變量的數(shù)學(xué)期望的定義求期望的值
【題型】解答題
【結(jié)束】
19
【題目】如圖,在四棱錐中,底面
為菱形,
平面
,
,
,
,
分別是
,
的中點(diǎn).
(1)證明: ;
(2)設(shè)為線段
上的動(dòng)點(diǎn),若線段
長的最小值為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)有兩個(gè)極值點(diǎn)
,
,且
.
()求
的取值范圍,并討論
的單調(diào)性.
()證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為探索課堂教學(xué)改革,江門某中學(xué)數(shù)學(xué)老師用傳統(tǒng)教學(xué)和“導(dǎo)學(xué)案”兩種教學(xué)方式,在甲、乙兩個(gè)平行班進(jìn)行教學(xué)實(shí)驗(yàn)。為了解教學(xué)效果,期末考試后,分別從兩個(gè)班級各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計(jì),得到如下莖葉圖。記成績不低于70分者為“成績優(yōu)良”。
(Ⅰ)請大致判斷哪種教學(xué)方式的教學(xué)效果更佳,并說明理由;
(Ⅱ)構(gòu)造一個(gè)教學(xué)方式與成績優(yōu)良列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”?
(附:,其中
是樣本容量)
獨(dú)立性檢驗(yàn)臨界值表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn)到定點(diǎn)
的距離比
到定直線
的距離小1.
(Ⅰ)求點(diǎn)的軌跡
的方程;
(Ⅱ)過點(diǎn)任意作互相垂直的兩條直線
,分別交曲線
于點(diǎn)
和
.設(shè)線段
,
的中點(diǎn)分別為
,求證:直線
恒過一個(gè)定點(diǎn);
(Ⅲ)在(Ⅱ)的條件下,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求
的最小值;
(2)若在
上為單調(diào)函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com