【題目】隨著移動互聯(lián)網(wǎng)的發(fā)展,與餐飲美食相關(guān)的手機軟件層出不窮.為調(diào)查某款訂餐軟件的商家的服務(wù)情況,統(tǒng)計了10次訂餐“送達時間”,得到莖葉圖如下:(時間:分鐘)
(1)請計算“送達時間”的平均數(shù)與方差:
(2)根據(jù)莖葉圖填寫下表:
送達時間 | 35分組以內(nèi)(包括35分鐘) | 超過35分鐘 |
頻數(shù) | A | B |
頻率 | C | D |
在答題卡上寫出,
,
,
的值;
(3)在(2)的情況下,以頻率代替概率.現(xiàn)有3個客戶應(yīng)用此軟件訂餐,求出在35分鐘以內(nèi)(包括35分鐘)收到餐品的人數(shù)的分布列,并求出數(shù)學(xué)期望.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】光伏發(fā)電是利用太陽能電池及相關(guān)設(shè)備將太陽光能直接轉(zhuǎn)化為電能.近幾年在國內(nèi)出臺的光伏發(fā)電補貼政策的引導(dǎo)下,某地光伏發(fā)電裝機量急劇上漲,如下表:
某位同學(xué)分別用兩種模型:①②
進行擬合,得到相應(yīng)的回歸方程并進行殘差分析,殘差圖如下(注:殘差等于
):
經(jīng)過計算得,
.
(1)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)該選擇哪個模型?并簡要說明理由.
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù)建立y關(guān)于x的回歸方程,并預(yù)測該地區(qū)2020年新增光伏裝機量是多少.(在計算回歸系數(shù)時精確到0.01)
附:歸直線的斜率和截距的最小二乘估計公式分別為:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知點,過點
作直線
、
與圓
:
和拋物線
:
都相切.
(1)求拋物線的兩切線的方程;
(2)設(shè)拋物線的焦點為,過點
的直線與拋物線相交于
、
兩點,與拋物線的準(zhǔn)線交于點
(其中點
靠近點
),且
,求
與
的面積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,
為梯形,
,
,
,
,
,
.
(1)在線段上有一個動點
,滿足
且
平面
,求實數(shù)
的值;
(2)已知與
的交點為
,若
,且平面
,求二面角
平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的離心率為
,
分別是橢圓的左右焦點,點
是橢圓上任意一點,且
.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)在直線上是否存在點Q,使以
為直徑的圓經(jīng)過坐標(biāo)原點O,若存在,求出線段
的長的最小值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
.
(1)若是函數(shù)
的導(dǎo)函數(shù)的零點,求
的單調(diào)區(qū)間;
(2)若不等式對
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,,E為AB的中點.將
沿DE翻折,得到四棱錐
.設(shè)
的中點為M,在翻折過程中,有下列三個命題:
①總有平面
;
②線段BM的長為定值;
③存在某個位置,使DE與所成的角為90°.
其中正確的命題是_______.(寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左、右焦點分別是
,
,
,
是其左右頂點,點
是橢圓
上任一點,且
的周長為6,若
面積的最大值為
.
(1)求橢圓的方程;
(2)若過點且斜率不為0的直線交橢圓
于
,
兩個不同點,證明:直線
與
的交點在一條定直線上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com