【題目】在平面直角坐標系中,將曲線
(
為參數)上任意一點
經過伸縮變換
后得到曲線
的圖形.以坐標原點
為極點,x軸的非負半軸為極軸,取相同的單位長度建立極坐標系,已知直線
.
(1)求曲線的普通方程和直線
的直角坐標方程;
(2)點P為曲線上的任意一點,求點P到直線
的距離的最大值及取得最大值時點P的坐標.
科目:高中數學 來源: 題型:
【題目】已知拋物線,的焦點為
,過點
的直線
的斜率為
,與拋物線
交于
,
兩點,拋物線在點
,
處的切線分別為
,
,兩條切線的交點為
.
(1)證明:;
(2)若的外接圓
與拋物線
有四個不同的交點,求直線
的斜率的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
,
)的圖象與
軸交點的橫坐標構成一個公差為
的等差數列,把函數
的圖象沿
軸向左平移
個單位,縱坐標擴大到原來的2倍得到函數
的圖象,則下列關于函數
的命題中正確的是( )
A.函數是奇函數B.
的圖象關于直線
對稱
C.在
上是增函數D.當
時,函數
的值域是
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了檢測某種零件的一條生產線的生產過程,從生產線上隨機抽取一批零件,根據其尺寸的數據分成,
,
,
,
,
,
組,得到如圖所示的頻率分布直方圖.若尺寸落在區間
之外,則認為該零件屬“不合格”的零件,其中
,
分別為樣本平均和樣本標準差,計算可得
(同一組中的數據用該組區間的中點值作代表).
(1)若一個零件的尺寸是,試判斷該零件是否屬于“不合格”的零件;
(2)工廠利用分層抽樣的方法從樣本的前組中抽出
個零件,標上記號,并從這
個零件中再抽取
個,求再次抽取的
個零件中恰有
個尺寸小于
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓
:
的焦距為2,且過點
.
(1)求橢圓的方程;
(2)設橢圓的上頂點為
,右焦點為
,直線
與橢圓交于
,
兩點,問是否存在直線
,使得
為
的垂心,若存在,求出直線
的方程:若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓(
),點
為橢圓短軸的上端點,
為橢圓上異于
點的任一點,若
點到
點距離的最大值僅在
點為短軸的另一端點時取到,則稱此橢圓為“圓橢圓”,已知
.
(1)若,判斷橢圓
是否為“圓橢圓”;
(2)若橢圓是“圓橢圓”,求
的取值范圍;
(3)若橢圓是“圓橢圓”,且
取最大值,
為
關于原點
的對稱點,
也異于
點,直線
、
分別與
軸交于
、
兩點,試問以線段
為直徑的圓是否過定點?證明你的結論.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com