求中心在坐標(biāo)原點(diǎn),對稱軸為坐標(biāo)軸且經(jīng)過點(diǎn),一條漸近線的傾斜角為
的雙曲線方程。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知
,直線
, 動點(diǎn)
到
的距離是它到定直線
距離的
倍. 設(shè)動點(diǎn)
的軌跡曲線為
.
(1)求曲線的軌跡方程.
(2)設(shè)點(diǎn), 若直線
為曲線
的任意一條切線,且點(diǎn)
、
到
的距離分別為
,試判斷
是否為常數(shù),請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:
的右焦點(diǎn)
在圓
上,直線
交橢圓于
、
兩點(diǎn).
(1)求橢圓的方程;
(2)若(
為坐標(biāo)原點(diǎn)),求
的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)直線是曲線
的一條切線,
.
(Ⅰ)求切點(diǎn)坐標(biāo)及的值;
(Ⅱ)當(dāng)時,存在
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點(diǎn)的橢圓C:的一個焦點(diǎn)為
,
為橢圓C上一點(diǎn),
的面積為
.
(1)求橢圓C的方程;
(2)是否存在平行于OM的直線,使得直線
與橢圓C相交于A,B兩點(diǎn),且以線段AB為直徑的圓恰好經(jīng)過原點(diǎn)?若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的焦點(diǎn)與橢圓
的右焦點(diǎn)重合,拋物線
的頂點(diǎn)在坐標(biāo)原點(diǎn),過點(diǎn)
的直線
與拋物線
交于A,B兩點(diǎn),
(1)寫出拋物線的標(biāo)準(zhǔn)方程 (2)求⊿ABO的面積最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓和圓
:
,過橢圓上一點(diǎn)P引圓O的兩條切線,切點(diǎn)分別為A,B.
(1)(ⅰ)若圓O過橢圓的兩個焦點(diǎn),求橢圓的離心率e的值;
(ⅱ)若橢圓上存在點(diǎn)P,使得,求橢圓離心率e的取值范圍;
(2)設(shè)直線AB與x軸、y軸分別交于點(diǎn)M,N,問當(dāng)點(diǎn)P在橢圓上運(yùn)動時,是否為定值?請證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓與拋物線
的焦點(diǎn)均在
軸上,
的中心及
的頂點(diǎn)均為原點(diǎn),從每條曲線上各取兩點(diǎn),將其坐標(biāo)記錄于下表:
![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線,直線
截拋物線C所得弦長為
.
(1)求拋物線的方程;
(2)已知是拋物線上異于原點(diǎn)
的兩個動點(diǎn),記
若
試求當(dāng)
取得最小值時
的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com