【題目】如圖,在三棱柱中,側面
是菱形,
,
.
(1)若是線段
的中點,求證:平面
平面
;
(2)若、
、
分別是線段
、
、
的中點,求證:直線
平面
.
科目:高中數學 來源: 題型:
【題目】“垛積術”(隙積術)是由北宋科學家沈括在《夢溪筆談》中首創,南宋數學家楊輝、元代數學家朱世杰豐富和發展的一類數列求和方法,有菱草垛、方垛、芻童垛、三角垛等等,某倉庫中部分貨物堆放成如圖所示的“菱草垛”:自上而下,第一層1件,以后每一層比上一層多1件,最后一層是n件,已知第一層貨物單價1萬元,從第二層起,貨物的單價是上一層單價的.若這堆貨物總價是
萬元,則n的值為( )
A. 7B. 8C. 9D. 10
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】電子計算機誕生于20世紀中葉,是人類最偉大的技術發明之一.計算機利用二進制存儲信息,其中最基本單位是“位(bit)”,1位只能存放2種不同的信息:0或l,分別通過電路的斷或通實現.“字節(Byte)”是更大的存儲單位,1Byte=8bit,因此1字節可存放從00000000(2)至11111111(2)共256種不同的信息.將這256個二進制數中,所有恰有相鄰兩位數是1其余各位數均是0的所有數相加,則計算結果用十進制表示為
A. 254B. 381C. 510D. 765
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖.
(Ⅰ)由折線圖看出,可用線性回歸模型擬合y與t的關系,請用相關系數加以說明;
(Ⅱ)建立y關于t的回歸方程(系數精確到0.01),預測2016年我國生活垃圾無害化處理量.
附注:
參考數據:,
,
,
≈2.646.
參考公式:相關系數
回歸方程中斜率和截距的最小二乘估計公式分別為:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正三棱柱的底面邊長和側棱長都為2,
是
的中點.
(1)在線段上是否存在一點
,使得平面
平面
,若存在指出點
在線段
上的位置,若不存在,請說明理由;
(2)求直線與平面
所成的角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某企業生產的某種產品中抽取100件,測量這些產品的質量指標值,由測量結果得到如圖所示的頻率分布直方圖,質量指標值落在區間,
,
內的頻率之比為
.
(Ⅰ)求這些產品質量指標值落在區間內的頻率;
(Ⅱ)用分層抽樣的方法在區間內抽取一個容量為6的樣本,將該樣本看成一個總體,從中任意
抽取2件產品,求這2件產品都在區間內的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com