已知數(shù)列{an}的前n項和Sn=1-kan(k>0,n∈N*).
(1)用n、k表示an;
(2)數(shù)列{bn}對n∈N*均有(bn+1-bn+2)lga1+(bn+2-bn)lga3+(bn-bn+1)lga5=0,求證:數(shù)列{bn}為等差數(shù)列;
(3)在(1)、(2)中,設k=1,bn=n+1,xn=a1b1+a2b2+a3b3+…+anbn,求證:xn<3.
【答案】
分析:(1)由前n項的和S
n與a
n的關系 a
n+1=S
n+1-S
n,得到數(shù)列的遞推公式,注意分析k是否為零,再求數(shù)列的通項公式.
(2)若(b
n+1-b
n+2)lga
1+(b
n+2-b
n)lga
3+(b
n-b
n+1)lga
5=0,即∴(b
n+1-b
n+2)lg

+(b
n+2-b
n)lg[(

×(

)
2]+(b
n-b
n+1)lg[(

×(

)
4]=0,展開整理后可得b
n+2+b
n=2b
n+1,根據(jù)等比數(shù)列的定義,可得數(shù)列{b
n}為等差數(shù)列;
(3)將k=1代入,利用錯位相減法,求出x
n=3-(n+3)

,結(jié)合(n+3)

>0,可得x
n<3
解答:解:(1)∵S
n=1-ka
n,
∴S
1=a
1=1-ka
1,
∴a
1=

∴a
n+1=S
n+1-S
n=(1-ka
n+1)-(1-ka
n),
∴a
n+1=ka
n-ka
n+1,即 (k+1)a
n+1=ka
n,
∵kk≠1解得a
n+1=

a
n(1)
∵k>0,a
1≠0,由(1)式易知a
n≠0,n≥1,
∴

=

故該數(shù)列是公比為

,首項為

的等比數(shù)列,
∴a
n=

×(

)
n-1.
證明:(2)∵(b
n+1-b
n+2)lga
1+(b
n+2-b
n)lga
3+(b
n-b
n+1)lga
5=0,
∴(b
n+1-b
n+2)lg

+(b
n+2-b
n)lg[(

×(

)
2]+(b
n-b
n+1)lg[(

×(

)
4]=0…①
令lg

=m,lg

=n,則m,n均不為0
則①式可化為m(b
n+1-b
n+2)+(m+2n)(b
n+2-b
n)+(m+4n)(b
n-b
n+1)=0
即b
n+2+b
n=2b
n+1,
即數(shù)列{b
n}為等差數(shù)列;
(3)若k=1,a
n=

×(

)
n-1=(

)
n,
又∵b
n=n+1,
∴x
n=

×2+

×3+

×4+…+

(n+1)…①,
∴

x
n=

×2+

×3+…+

n+

(n+1)…②
①-②得

x
n=1+[

+

+…+

]-

(n+1)=

-


∴x
n=3-(n+3)

∵(n+3)

>0
∴x
n<3
點評:本題考查的知識點是數(shù)列通項公式的求法,等差數(shù)列的證明,等差數(shù)列的應用,是數(shù)列的綜合應用,運算量大,容易出錯,但解題思路易梳理,屬于中檔題.