【題目】蘋果是人們日常生活中常見的營養型水果.某地水果批發市場銷售來自5個不同產地的富士蘋果,各產地的包裝規格相同,它們的批發價格(元/箱)和市場份額如下:
產地 | |||||
批發價格 | |||||
市場份額 |
市場份額亦稱“市場占有率”.指某一產品的銷售量在市場同類產品中所占比重.
(1)從該地批發市場銷售的富士蘋果中隨機抽取一箱,求該箱蘋果價格低于元的概率;
(2)按市場份額進行分層抽樣,隨機抽取箱富士蘋果進行檢驗,
①從產地共抽取
箱,求
的值;
②從這箱蘋果中隨機抽取兩箱進行等級檢驗,求兩箱產地不同的概率;
(3)由于受種植規模和蘋果品質的影響,預計明年產地的市場份額將增加
,產地
的市場份額將減少
,其它產地的市場份額不變,蘋果銷售價格也不變(不考慮其它因素).設今年蘋果的平均批發價為每箱
元,明年蘋果的平均批發價為每箱
元,比較
的大小.(只需寫出結論)
【答案】(1)0.60;(2);(3)
【解析】
(1)價格低于元的概率等價于價格低于
元的市場占有率之和;
(2)①根據分層抽樣的計算公式進行計算,可得出從產地共抽出的箱數;
②將5箱進行編號,列舉出選擇兩箱的所有可能,然后根據古典概型計算公式進行求解;
(3)根據平均值計算公式進行估算。
(1)設事件:“從該地批發市場銷售的富士蘋果中隨機抽取一箱,該箱蘋果價格低于160 元”.
由題意可得:=0.15+0.25+0.20=0.60 .
(2)①地抽取
;
地抽取
所以 .
②設地抽取的3箱蘋果分別記為
;
地抽取的2箱蘋果分別記為
,
從這5箱中抽取2箱共有10種抽取方法.
,
來自不同產地共有6種.
所以從這箱蘋果中隨機抽取兩箱進行等級檢驗,兩箱產地不同的概率為:
.
(3)
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點為
,長半軸長與短半軸長的比值為
.
(1)求橢圓的方程;
(2)設經過點的直線
與橢圓
相交于不同的兩點
,
.若點
在以線段
為直徑的圓上,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了調查民眾對國家實行“新農村建設”政策的態度,現通過網絡問卷隨機調查了年齡在20周歲至80周歲的100人,他們年齡頻數分布和支持“新農村建設”人數如下表:
(1)根據上述統計數據填下面的2×2列聯表,并判斷是否有95%的把握認為以50歲為分界點對“新農村建設”政策的支持度有差異;
(2)為了進一步推動“新農村建設”政策的實施,中央電視臺某節目對此進行了專題報道,并在節目最后利用隨機撥號的形式在全國范圍內選出4名幸運觀眾(假設年齡均在20周歲至80周歲內),給予適當的獎勵.若以頻率估計概率,記選出4名幸運觀眾中支持“新農村建設”人數為,試求隨機變量
的分布列和數學期望.
參考數據:
參考公式:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓的圓心在射線
上,截直線
所得的弦長為6,且與直線
相切.
(1)求圓的方程;
(2)已知點,在直線
上是否存在點
(異于點
),使得對圓
上的任一點
,都有
為定值
?若存在,請求出點
的坐標及
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓b2x2+a2y2=a2b2(a>b>0)的兩個焦點分別是F1、F2,等邊三角形的邊AF1、AF2與該橢圓分別相交于B、C兩點,且2|BC|=|F1F2|,則該橢圓的離心率等于( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左頂點為
,兩個焦點與短軸一個頂點構成等腰直角三角形,過點
且與x軸不重合的直線l與橢圓交于M,N不同的兩點.
(Ⅰ)求橢圓P的方程;
(Ⅱ)當AM與MN垂直時,求AM的長;
(Ⅲ)若過點P且平行于AM的直線交直線于點Q,求證:直線NQ恒過定點.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com