【題目】已知函數,
,
.
(1)當時,若對任意
均有
成立,求實數
的取值范圍;
(2)設直線與曲線
和曲線
相切,切點分別為
,
,其中
.
①求證:;
②當時,關于
的不等式
恒成立,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】設橢圓為左右焦點,
為短軸端點,長軸長為4,焦距為
,且
,
的面積為
.
(Ⅰ)求橢圓的方程
(Ⅱ)設動直線橢圓
有且僅有一個公共點
,且與直線
相交于點
.試探究:在坐標平面內是否存在定點
,使得以
為直徑的圓恒過點
?若存在求出點
的坐標,若不存在.請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設E,F分別是正方體ABCD﹣A1B1C1D1的棱DC上兩點,且AB=2,EF=1,給出下列四個命題:
①三棱錐D1﹣B1EF的體積為定值;
②異面直線D1B1與EF所成的角為45°;
③D1B1⊥平面B1EF;
④直線D1B1與平面B1EF所成的角為60°.
其中正確的命題為_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
(
)的左右焦點分別為
,
且
關于直線
的對稱點
在直線
上.
(1)求橢圓的離心率;
(2)若的長軸長為
且斜率為
的直線
交橢圓于
,
兩點,問是否存在定點
,使得
,
的斜率之和為定值?若存在,求出所有滿足條件的
點坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=﹣alnx+(a+1)x﹣(a>0).
(1)討論函數f(x)的單調性;
(2)若f(x)≥﹣+ax+b恒成立,求a
時,實數b的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知菱形,
在
軸上且
,
(
,
).
(Ⅰ)求點軌跡
的方程;
(Ⅱ)延長交軌跡
于點
,軌跡
在點
處的切線與直線
交于點
,試判斷以
為圓心,線段
為半徑的圓與直線
的位置關系,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為保護農民種糧收益,促進糧食生產,確保國家糧食安全,調動廣大農民糧食生產的積極性,從2004年開始,國家實施了對種糧農民直接補貼.通過對2014~2018年的數據進行調查,發現某地區發放糧食補貼額(億元)與該地區糧食產量
(萬億噸)之間存在著線性相關關系.統計數據如下表:
年份 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
補貼額 | 9 | 10 | 12 | 11 | 8 |
糧食產量 | 23 | 25 | 30 | 26 | 21 |
(1)請根據如表所給的數據,求出關于
的線性回歸直線方程
;
(2)通過對該地區糧食產量的分析研究,計劃2019年在該地區發放糧食補貼額7億元,請根據(1)中所得的線性回歸直線方程,預測2019年該地區的糧食產量.
(參考公式:,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中中,直線
,圓
的參數方程為
為參數),以坐標原點為極點,以
軸正半軸為極軸,建立極坐標系.
(1)求直線和圓
的極坐標方程;
(2)若直線與圓
交于
兩點,且
的面積是
,求實數
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com