【題目】如圖,已知平面平面
,直線
平面
,且
.
(1)求證:DA∥平面;
(2)若,
平面
,求二面角
的余弦值.
【答案】(1)見解析;(2)
【解析】
(1)過點作
于點
,由已知利用面面垂直的性質可得
平面
,結合
平面
,得
,再由線面平行的判定可得
平面
;
(2)由已知證明四邊形是矩形,以
為坐標原點,分別以
所在直線為
軸建立空間直角坐標系,設
,分別求出平面
的一個法向量與平面
的一個法向量,由兩法向量所成角的余弦值可得二面角
的余弦值.
(1)證明:過點E作于點
,
∵平面平面
,又平面
平面
平面
,
∴平面
,
又∵平面
,∴
,
∵平面
,
平面
,
∴平面
;
(2)∵平面
,∴
,
又∵,則
,
∴點是
的中點,連接
,則
,
∴平面
,則
.
∴四邊形是矩形.
以為坐標原點,分別以
所在直線為
軸建立空間直角坐標系,
設,則
,
設平面的一個法向量為
,
∵,
由取
,得
;
又平面的一個法向量為
,
設二面角的平面角為
,
,
,
二面角是鈍角,則二面
的余弦值為
.
科目:高中數學 來源: 題型:
【題目】一幅標準的三角板如圖1中,為直角,
,
為直角,
,且
,把
與
拼齊使兩塊三角板不共面,連結
如圖2.
(1)若是
的中點,
是
的中點,求證:
平面
;
(2)在《九章算術》中,稱四個面都是直角三角形的三棱錐為“鱉臑”,若圖2中,三棱錐
的體積為2,則圖2是否為鱉臑?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】新能源汽車的春天來了!2018年3月5日上午,李克強總理做政府工作報告時表示,將新能源汽車車輛購置稅優惠政策再延長三年,自2018年1月1日至2020年12月31日,對購置的新能源汽車免征車輛購置稅.某人計劃于2018年5月購買一輛某品牌新能源汽車,他從當地該品牌銷售網站了解了近五個月的實際銷量如下表:
月份 | 2017.12 | 2018.01 | 2018.02 | 2018.03 | 2018.04 |
月份編號 | 1 | 2 | 3 | 4 | 5 |
銷量(萬量) | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)經分析,可用線性回歸模型擬合當地該品牌新能源汽車實際銷量(萬輛)與月份編號
之間的相關關系.請用最小二乘法求
關于
的線性回歸方程
,并預測2018年5月份當地該品牌新能源汽車的銷量;
(2)2018年6月12日,中央財政和地方財政將根據新能源汽車的最大續航里程(新能源汽車的最大續航里程是指理論上新能源汽車所裝的燃料或電池所能夠提供給車跑的最遠里程)對購車補貼進行新一輪調整.已知某地擬購買新能源汽車的消費群體十分龐大,某調研機構對其中的200名消費者的購車補貼金額的心理預期值進行了一個抽樣調查,得到如下一份頻數表:
補貼金額預期值區間(萬元) | ||||||
頻數 | 20 | 60 | 60 | 30 | 20 | 10 |
(i)求這200位擬購買新能源汽車的消費者對補貼金額的心理預期值的方差
及中位數的估計值(同一區間的預期值可用該區間的中點值代替,估計值精確到0.1);
(ii)將頻率視為概率,現用隨機抽樣方法從該地區擬購買新能源汽車的所有消費者中隨機抽取3人,記被抽取的3人中對補貼金額的心理預期值不低于3萬元的人數為,求
的分布列及數學期望
.
附:①回歸直線的斜率和截距的最小二乘估計公式分別為:,
;②
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年12月16日,公安部聯合阿里巴巴推出的“錢盾反詐機器人”正式上線,當普通民眾接到電信網絡詐騙電話,公安部錢盾反詐預警系統預警到這一信息后,錢盾反詐機器人即自動撥打潛在受害人的電話予以提醒,來電信息顯示為“公安反詐專號”.某法制自媒體通過自媒體調查民眾對這一信息的了解程度,從5000多參與調查者中隨機抽取200個樣本進行統計,得到如下數據:男性不了解這一信息的有50人,了解這一信息的有80人,女性了解這一信息的有40人.
(1)完成下列列聯表,問:能否在犯錯誤的概率不超過0.01的前提下,認為200個參與調查者是否了解這一信息與性別有關?
了解 | 不了解 | 合計 | |
男性 | |||
女性 | |||
合計 |
(2)該自媒體對200個樣本中了解這一信息的調查者按照性別分組,用分層抽樣的方法抽取6人,再從這6人中隨機抽取3人給予一等獎,另外3人給予二等獎,求一等獎與二等獎獲得者都有女性的概率.
附:
P(K2≥k) | 0.01 | 0.005 | 0.001 |
k | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數,下述四個結論:
①是偶函數;
②的最小正周期為
;
③的最小值為0;
④在
上有3個零點
其中所有正確結論的編號是( )
A.①②B.①②③C.①③④D.②③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某景區是一個以為圓心,半徑為
的圓形區域,道路
,
成
角,且均和景區邊界相切,現要修一條與景區相切的觀光木棧道
,點
,
分別在
和
上,修建的木棧道
與道路
,
圍成的三角地塊
.
(1)求修建的木棧道與道路
,
圍成的三角地塊
面積的最小值;
(2)若景區中心與木棧道
段連線的
.
①將木棧道的長度表示為
的函數,并指定定義域;
②求出木棧道的長度最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在四棱錐中,
平面
是
的中點,
是
上的點且
為
邊
上的高.
(1)證明: 平面
;
(2)若,求三棱錐
的體積;
(3)在線段上是否存在這樣一點
,使得
平面
?若存在,說出
點的位置.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com