【題目】某地教育研究中心為了調查該地師生對“高考使用全國統一命題的試卷”這一看法,對該市區部分師生進行調查,先將調查結果統計如下:
贊成 | 反對 | 總計 | |
教師 | 120 | ||
學生 | 40 | ||
總計 | 280 | 120 |
(1)請將表格補充完整,若該地區共有教師30000人,以頻率為概率,試估計該地區教師反對“高考使用全國統一命題的試卷”這一看法的人數;
(2)按照分層抽樣從“反對”的人中先抽取6人,再從中隨機選出3人進行深入調研,求深入調研中恰有1名學生的概率.
科目:高中數學 來源: 題型:
【題目】放射性元素由于不斷有原子放射出微粒子而變成其他元素,其含量不斷減少,這種現象稱為衰變.假設在放射性同位素銫137的衰變過程中,其含量M(單位:太貝克)與時間t(單位:年)滿足函數關系:M(t)=M0 ,其中M0為t=0時銫137的含量.已知t=30時,銫137含量的變化率是﹣10In2(太貝克/年),則M(60)=( )
A.5太貝克
B.75In2太貝克
C.150In2太貝克
D.150太貝克
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=1+ .
(Ⅰ)是否存在實數a的值,使f(x)為奇函數?若存在,求出a的值;若不存在,說明理由;
(Ⅱ)若a=1,t(2x+1)f(x)>2x﹣2對x∈R恒成立,求實數f(x)的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)= 是定義在(﹣∞,+∞)上的奇函數,且f(
)=
.
(1)求實數a、b,并確定函數f(x)的解析式;
(2)判斷f(x)在(﹣1,1)上的單調性,并用定義證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在(﹣1,1)上的減函數f(x)且滿足對任意的實數x,y都有f(x+y)=f(x)+f(y)
(Ⅰ)判斷函數f(x)的奇偶性;
(Ⅱ)解關于x的不等式f(log2x﹣1)+f(log2x)<0.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題p:關于x的不等式ax>1(a>0,a≠1)的解集是{x|x<0},命題q:函數y=lg(ax2-x+a)的定義域為R,如果p∨q為真命題,p∧q為假命題,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+bx+1滿足f(1+x)=f(1﹣x), .
(1)求函數f(x)的解析式;
(2)判斷g(x)在[1,2]上的單調性并用定義證明你的結論;
(3)求g(x)在[1,2]上的最大值和最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com