日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
9.已知函數f(x)=x2-ax-aln(x-1)(a∈R).
(1)當a=1時,求函數f(x)的單調區間;
(2)當a∈R時,求函數f(x)的單調區間.

分析 (1)首先求出函數的定義域,把a=1代入函數解析式后,求出函數的導函數,由導函數等于0求出函數的極值點,結合定義域可得函數在定義域內取得最值的情況,從而求出函數的最值.
(2)把原函數求導后,對參數a進行分類,根據a的不同取值得到導函數在不同區間內的符號,從而得到原函數的單調區間.

解答 解:(1)函數f(x)=x2-ax-aln(x-1)(a∈R)的定義域是(1,+∞)
當a=1時,f(x)=x2-x-ln(x-1),
f′(x)=2x-1-$\frac{1}{x-1}$=$\frac{2x(x-\frac{3}{2})}{x-1}$,
當x∈(1,$\frac{3}{2}$)時,f′(x)<0,
所以f (x)在(1,$\frac{3}{2}$)為減函數.
當x∈($\frac{3}{2}$,+∞)時,f′(x)>0,
所以f (x)在($\frac{3}{2}$,+∞)為增函數,
則當x=$\frac{3}{2}$時,f(x)有極小值,也就是最小值.
所以函數f (x)的最小值為f($\frac{3}{2}$)=$\frac{3}{4}$+ln2;
(2)f′(x)=2x-a-$\frac{a}{x-1}$=$\frac{2x(x-\frac{a+2}{2})}{x-1}$,
若a≤0時,則 $\frac{a+2}{2}$≤1,f′(x)>0在(1,+∞)恒成立,
所以f(x)的增區間為(1,+∞).
若a>0,則 $\frac{a+2}{2}$>1,故當x∈(1,$\frac{a+2}{2}$],f′(x)≤0,
當x∈[$\frac{a+2}{2}$,+∞)時,f′(x)≥0,
所以a>0時f(x)的減區間為(1,$\frac{a+2}{2}$],f(x)的增區間為[$\frac{a+2}{2}$,+∞).

點評 本題考查了利用導數研究函數的最值,求函數在閉區間[a,b]上的最大值與最小值是通過比較函數在(a,b)內所有極值與端點函數f(a),f(b) 比較而得到的.考查了利用導數研究函數的單調性,函數的導函數在(a,b)內恒大于等于0,原函數在該區間內單調遞增,函數的導函數在(a,b)內恒小于等于0,原函數在該區間內單調遞減,此題是中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

16.已知y=xcosx,則y′=$\frac{1}{2}sin2x•{x}^{cosx-1}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.設i為虛數單位,n為正整數.
(1)證明:(cosx+isinx)n=cosnx+isinnx;
(2)結合等式“[1+(cosx+isinx)]n=[(1+cosx)+isinx]n”,證明:1+${C}_{n}^{1}$cosx+${C}_{n}^{2}$cos2x+…+${C}_{n}^{n}$cosnx=2ncosn$\frac{x}{2}$cos$\frac{nx}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.已知ABCD為等腰梯形,AD∥BC,AD=2,M,N分別為AD,BC的中點,MN=$\sqrt{3}$,現以AD為邊,作兩個正三角形△EAD與△PAD,如圖,其中平面EAD與平面ABCD共面,平面PAD⊥平面ABCD,Q為PE
的中點.
(Ⅰ)求證:平面QAD∥平面PBC;
(Ⅱ)求證:PE⊥平面PBC;
(Ⅲ)求AE與平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.已知定點F($\sqrt{2}$,0),定直線l:x=2$\sqrt{2}$,動點P到定點F距離是它到定直線l距離的$\frac{\sqrt{2}}{2}$倍.設動點P的軌跡為曲線E.
(1)求曲線E的方程.
(2)過點(1,0)的直線l與曲線E交與不同的兩點M,N,點A為曲線E的右頂點,當△AMN的面積為$\frac{\sqrt{10}}{3}$時,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知f(x)=x3-ax2-3x,其中a∈R.
(1)當a=4時,求f(x)在[-1,1]上的最大值;
(2)若f(x)在[1,+∞)上存在單調遞減區間,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.已知函數f(x)=2x3-3x2-f′(0)x+c(c∈R),其中f(0)為函數f(x)在x=0處的導數.
(1)求函數f(x)的遞減區間;
(2)若函數f(x)的極大值和極小值互為相反數,求函數f(x)的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.如圖,已知三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AC=3,BC=4,AB=5,AA1=3
(1)求AC1與B1C所成角的余弦值
(2)求二面角A1-BC-A的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.已知$f(x)=\left\{\begin{array}{l}3x-3,x≥0\\{({\frac{1}{2}})^x}-4,x<0\end{array}\right.$則f(x)的零點為-2和1.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 一区二区三区免费 | 日韩精品第一区 | 国产精品视频不卡 | 一级片免费在线视频 | 欧美一级在线视频 | 亚洲美女在线视频 | 成人小视频在线观看 | 国产乱精品一区二区三区 | 日本高清视频网站www | 99日韩精品 | 在线精品自拍 | 操人网站| 自拍视频在线观看免费 | 欧美综合色 | 国产精品久久久久久一区二区三区 | 91精品国产高清久久久久久久久 | 欧美日本国产 | 超碰人人艹 | 欧美三级电影在线 | 亚洲一区久久 | 亚洲无限乱码一二三四麻 | 91麻豆精品 | 色爽女人免费 | 品久久久久久久久久96高清 | 亚洲综合国产激情另类一区 | 91精品综合久久久久久五月天 | 婷婷久久综合 | 久久av一区二区三区 | 一级片福利 | 国产精品久久久久久一区二区三区 | 一区二区三区四区久久 | 欧美精品一区二区三区在线播放 | 久草在线在线精品观看 | 在线免费日韩 | 污网址在线 | 欧美一级片免费观看 | 不卡av免费在线观看 | 一级做a毛片 | 91精品国产欧美一区二区 | 狠狠爱www人成狠狠爱综合网 | 国产涩涩 |