已知函數(shù),
.
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè),
,
,
為函數(shù)
的圖象上任意不同兩點(diǎn),若過(guò)
,
兩點(diǎn)的直線
的斜率恒大于
,求
的取值范圍.
(Ⅰ)見解析;(Ⅱ).
解析試題分析:(Ⅰ)先求出函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8a/e/1pfbz2.png" style="vertical-align:middle;" />,再對(duì)函數(shù)求導(dǎo)得
.對(duì)
分
,
,
,
四種情況進(jìn)行討論,求得每種情況下使得
的
的取值范圍,求得的
的取值集合即是函數(shù)的單調(diào)增區(qū)間;(Ⅱ)先根據(jù)兩點(diǎn)坐標(biāo)求出斜率滿足的不等式,對(duì)
、
的取值進(jìn)行分類討論,然后將問(wèn)題“過(guò)
,
兩點(diǎn)的直線
的斜率恒大于
”轉(zhuǎn)化為“函數(shù)
在
恒為增函數(shù)”,即在
上,
恒成立問(wèn)題,即是
在
恒成立問(wèn)題,然后根據(jù)不等式恒成立問(wèn)題并結(jié)合二次函數(shù)的圖像與性質(zhì)求解.
試題解析:(Ⅰ)依題意,的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8a/e/1pfbz2.png" style="vertical-align:middle;" />,
.
(ⅰ)若,
當(dāng)時(shí),
,
為增函數(shù).
(ⅱ)若,
恒成立,故當(dāng)
時(shí),
為增函數(shù).
(ⅲ)若,
當(dāng)時(shí),
,
為增函數(shù);
當(dāng)時(shí),
,
為增函數(shù).
(ⅳ)若,
當(dāng)時(shí),
,
為增函數(shù);
當(dāng)時(shí),
,
為增函數(shù).
綜上所述,
當(dāng)時(shí),函數(shù)
的單調(diào)遞增區(qū)間是
;當(dāng)
時(shí),函數(shù)
的單調(diào)遞增區(qū)間是
,
;當(dāng)
時(shí),函數(shù)
的單調(diào)遞增區(qū)間是
;當(dāng)
時(shí),函數(shù)
的單調(diào)遞增區(qū)間是
,
. 6分
(Ⅱ)依題意,若過(guò)兩點(diǎn)的直線
的斜率恒大于
,則有
,
當(dāng)時(shí),
,即
;
當(dāng)時(shí),
,即
.
設(shè)函數(shù)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=-(a+2)x+lnx.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f (1))處的切線方程;
(2)當(dāng)a>0時(shí),若f(x)在區(qū)間[1,e)上的最小值為-2,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
己知函數(shù) .
(I)若是,
的極值點(diǎn),討論
的單調(diào)性;
(II)當(dāng)時(shí),證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),
.
(Ⅰ)設(shè)(其中
是
的導(dǎo)函數(shù)),求
的最大值;
(Ⅱ)求證:當(dāng)時(shí),有
;
(Ⅲ)設(shè),當(dāng)
時(shí),不等式
恒成立,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線
在點(diǎn)
處的切線方程;
(Ⅱ)當(dāng)時(shí),若
在區(qū)間
上的最小值為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),
;
(1)當(dāng)時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)在[1,2]上是減函數(shù),求實(shí)數(shù)
的取值范圍;
(3)令,是否存在實(shí)數(shù)
,當(dāng)
(
是自然對(duì)數(shù)的底數(shù))時(shí),函數(shù)
的最小值是
.若存在,求出
的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知點(diǎn),函數(shù)
的圖象上的動(dòng)點(diǎn)
在
軸上的射影為
,且點(diǎn)
在點(diǎn)
的左側(cè).設(shè)
,
的面積為
.
(Ⅰ)求函數(shù)的解析式及
的取值范圍;
(Ⅱ)求函數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(I)求f(x)的單調(diào)區(qū)間及極值;
(II)若關(guān)于x的不等式恒成立,求實(shí)數(shù)a的集合.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com