【題目】己知數列,首項
,設該數列的前
項的和為
,且
(1)求數列的通項公式;
(2)若數列滿足
,求數列
的通項公式;
(3)在第(2)小題的條件下,令,
是數列
的前
項和,若對
,
恒成立,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現在某市進行調查,隨機調查了人,他們年齡的頻數分布及支持“生育二胎”人數如下表:
年齡 | [5,15) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) |
頻數 | 5 | 10 | 15 | 10 | 5 | 5 |
支持“生 育二胎” | 4 | 5 | 12 | 8 | 2 | 1 |
(1)由以上統計數據填下面2乘2列聯表,并問是否有99的把握認為以45歲為分界點對“生育二胎放開”政策的支持度有差異:
年齡不低于45歲的人數 | 年齡低于45歲的人數 | 合計 | |
支持 | a= | c= | |
不支持 | b= | d= | |
合計 |
(2)若對年齡在的被調查人中隨機選取兩人進行調查,恰好這兩人都支持“生育二胎放開”的概率是多少?
參考數據:P
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,點
在橢圓
上,過點
的直線
的方程為
.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若直線與
軸、
軸分別相交于
兩點,試求
面積的最小值;
(Ⅲ)設橢圓的左、右焦點分別為
,
,點
與點
關于直線
對稱,求證:點
三點共線.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】教材中指出:當很小,
不太大時,可以用
表示
的近似值,即
(1),我們把近似值與實際值之差除以實際值的商的絕對值稱為“相對近似誤差”,一般用字母
表示,即相對近似誤差
(1)利用(1)求出的近似值,并指出其相對近似誤差(相對近似誤差保留兩位有效數字)
(2)若利用(1)式計算的近似值產生的相對近似誤差不超過
,求正實數
的取值范圍;
(3)若利用(1)式計算的近似值產生的相對近似誤差不超過
,求正整數
的最大值。(參考對數數值:
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為坐標原點,橢圓
:
的左、右焦點分別為
,
.過焦點且垂直于
軸的直線與橢圓
相交所得的弦長為3,直線
與橢圓
相切.
(1)求橢圓的標準方程;
(2)是否存在直線:
與橢圓
相交于
兩點,使得
?若存在,求
的取值范圍;若不存在,請說明理由!
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com