日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
在△ABC中,角A,B,C的對邊分別為a,b,c,已知bcosC=(2a-c)cosB
(1)求角B的大小
(2)若b2=ac,試確定△ABC的形狀.
分析:(1)利用正弦定理把所給的式子轉化為含有角的式子,再由兩角和的正弦公式和內角和定理進行化簡,求出角B的余弦值,進而求出B;
(2)由(1)的結果和余弦定理,求出邊之間的關系,進而判斷出三角形的形狀.
解答:解:(1)∵bcosC=(2a-c)cosB
∴由正弦定理得,sinBcosC=(2sinA-sinC)cosB,
sinBcosC=2sinAcosB-sinCcosB,
sin(B+C)=2sinAcosB,
∵B+C=π-A,∴sin(B+C)=sinA,
∴cosB=
1
2
,則B=60°;
(2)由(1)得,B=60°,
根據余弦定理得,b2=a2+c2-2accosB,
∵b2=ac,∴ac=a2+c2-ac,即(a-c)2=0,
∴a=c,則三角形是等邊三角形.
點評:本題考查了正弦定理和余弦定理的綜合應用,實現角邊相互轉化,是判斷三角形的形狀常采用的一種方法.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D為BC的中點,求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩毛片在线观看 | 成人在线免费观看 | 国产日韩精品一区二区 | 免费视频一区 | 国产精品美女视频 | 久热精品视频 | 性视频网站免费 | 国产精品一区二区在线 | 国产乱精品一区二区三区 | 四虎永久免费在线 | 先锋资源中文字幕 | 国产精品久久久久久久久 | 精品视频免费观看 | 九九爱爱视频 | 一区在线播放 | 99福利视频 | 亚洲高清在线视频 | av网站免费在线观看 | 久久久999精品视频 成人激情在线 | 国产精品久久久久久久久久 | 日韩aaa久久蜜桃av | av网站免费在线 | 精品亚洲视频在线观看 | 国产在线偷 | 国产午夜精品一区二区 | 91视频一区二区三区 | 国产美女在线精品免费 | 国产成人精品999在线观看 | 日韩中文字幕免费观看 | 黄色污污视频在线观看 | 日本视频一区二区 | 欧美影院一区二区三区 | 亚洲一区电影 | 亚洲精片 | 一区二区高清 | 国产精品一区二区三区网站 | 色接久久 | 婷婷亚洲综合 | 成人精品一区二区三区中文字幕 | 9久9久9久女女女九九九一九 | 午夜视频在线免费观看 |