【題目】下列命題中正確的是( )
A.若正數是等差數列,則
是等比數列
B.若正數是等比數列,則
是等差數列
C.若正數是等差數列,則
是等比數列
D.若正數是等比數列,則是
等差數列
科目:高中數學 來源: 題型:
【題目】現安排甲、乙、丙、丁、戊5名同學參加2022年杭州亞運會志愿者服務活動,有翻譯、導游、禮儀、司機四項工作可以安排,以下說法正確的是( )
A. 每人都安排一項工作的不同方法數為
B. 每項工作至少有一人參加,則不同的方法數為
C. 如果司機工作不安排,其余三項工作至少安排一人,則這5名同學全部被安排的不同方法數為
D. 每項工作至少有一人參加,甲、乙不會開車但能從事其他三項工作,丙、丁、戊都能勝任四項工作,則不同安排方案的種數是
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在高中學習過程中,同學們經常這樣說“如果物理成績好,那么學習數學就沒什么問題”某班針對“高中生物理對數學學習的影響”進行研究,得到了學生的物理成績與數學成績具有線性相關關系的結論,現從該班隨機抽取5名學生在一次考試中的物理和數學成績,如表:
編號成績 | 1 | 2 | 3 | 4 | 5 |
物理(x) | 90 | 85 | 74 | 68 | 63 |
數學(y) | 130 | 125 | 110 | 95 | 90 |
(1)求數學y成績關于物理成績x的線性回歸方程(
精確到0.1),若某位學生的物理成績為80分時,預測他的數學成績.
(2)要從抽取的這五位學生中隨機選出三位參加一項知識競賽,以x表示選中的學生的數學成績高于100分的人數,求隨機變量X的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
(1)令,試討論
的單調性;
(2)若對恒成立,求
的取值范圍.
【答案】(1)見解析(2)
【解析】試題分析:(1)由,對函數求導,研究導函數的正負得到單調性即可;(2)由條件可知
對
恒成立,變量分離
,令
,求這個函數的最值即可.
解析:
(1)由得
當時,
恒成立,則
單調遞減;
當時,
,令
,
令.
綜上:當時,
單調遞減,無增區間;
當時,
,
(2)由條件可知對
恒成立,則
當時,
對
恒成立
當時,由
得
.令
則
,因為
,所以
,即
所以,從而可知
.
綜上所述: 所求.
點睛:導數問題經常會遇見恒成立的問題:
(1)根據參變分離,轉化為不含參數的函數的最值問題;
(2)若 就可討論參數不同取值下的函數的單調性和極值以及最值,最終轉化為
,若
恒成立
;
(3)若 恒成立,可轉化為
(需在同一處取得最值) .
【題型】解答題
【結束】
22
【題目】在平面直角坐標系中,曲線
的參數方程為
(
為參數),以
為極點,
軸的非負半軸為極軸的極坐標系中,直線
的極坐標方程為
.
(1)求曲線的極坐標方程;
(2)設直線與曲線
相交于
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2016·山東卷)已知數列{an}的前n項和Sn=3n2+8n,{bn}是等差數列,且an=bn+bn+1.
(1)求數列{bn}的通項公式;
(2)令cn=,求數列{cn}的前n項和Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(1)求證:BD⊥平面PAC;
(2)若PA=4,求平面PBC與平面PDC所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E是AB的中點,F在CC1上,且CF=2FC1,點P是側面AA1D1D(包括邊界)上一動點,且PB1∥平面DEF,則tan∠ABP的取值范圍為_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在直角坐標系中,直線
過點
,且傾斜角為
,以原點
為極點,
軸的正半軸為極軸,建立極坐標系,半徑為4的圓
的圓心的極坐標為
。
(Ⅰ)寫出直線的參數方程和圓
的極坐標方程;
(Ⅱ)試判定直線和圓
的位置關系.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com