【題目】已知函數f(x)=,其中0<a<1,k∈R。
(Ⅰ)若k=1,求函數f(x)的定義域;
(Ⅱ)若a=,且f(x)在[1,+∞)內總有意義,求k的取值范圍。
科目:高中數學 來源: 題型:
【題目】如圖,設橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1,F2,線段OF1,OF2的中點分別為B1,B2,且△AB1B2是面積為4的直角三角形.過B1作l交橢圓于P、Q兩點,使PB2垂直QB2,求直線l的方程__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解春季晝夜溫差大小與某種子發芽多少之間的關系,現在從4月份的30天中隨機挑選了5天進行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發芽數,得到如下表格:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發芽數 | 23 | 25 | 30 | 26 | 16 |
(1)從這5天中任選2天,記發芽的種子數分別為,求事件“
均不小于25”的概率;
(2)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數據,請根據這5天中的另三天的數據,求出關于
的線性回歸方程
.
(參考公式: ,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設復數z=2m+(4-m2)i,當實數m取何值時,復數z對應的點:
(1)位于虛軸上?
(2)位于一、三象限?
(3)位于以原點為圓心,以4為半徑的圓上?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
.
(1)若對任意,都有
成立,求
的值值范圍;
(2)若先將的圖象上每個點縱坐標不變,橫坐標變為原來的2倍,然后再向左平移
個單位得到函數
的圖象,求函數
在區間
內的所有零點之和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知關于的不等式
的解集為
.
(1)若是從
四個數中任取的一個數,
是從
三個數中任取的一個數,求
不為空集的概率;
(2)若是從區間
上任取的一個數,
是從區間
上任取的一個數,求
不為空集的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若定義在D上的函數f(x)滿足:對任意x∈D,存在常數M>0,都有-M<f(x)<M成立,則稱f(x)是D上的有界函數,其中M稱為函數f(x)的上界。
(Ⅰ)判斷函數f(x)=-2x+2,x∈[0,2]是否是有界函數,請說明理由;
(Ⅱ)若函數f(x)=1++
,x∈[0,+∞)是以3為上界的有界函數,求實數a的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,以
為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(1)求橢圓的標準方程;
(2)已知點,和面內一點
,過點
任作直線
與橢圓
相交于
兩點,設直線
的斜率分別為
,若
,試求
滿足的關系式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線:
(
)與橢圓
:
相交所得的弦長為
.
(Ⅰ)求拋物線的標準方程;
(Ⅱ)設,
是
上異于原點
的兩個不同點,直線
和
的傾斜角分別為
和
,當
,
變化且
為定值
(
)時,證明:直線
恒過定點,并求出該定點的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com