日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
6.已知集合A={x||x-4|≤2},$B=\left\{{x\left|{\frac{5-x}{x+1}>0}\right.}\right\}$,全集U=R.
(1)求A∩(∁UB);
(2)若集合C={x|x<a},A∩C≠∅,求實數a的取值范圍.

分析 先化簡A,B,(1)求出B的補集,找出A與B補集的交集即可,
(2)根據集合C={x|x<a},A∩C≠∅,即可求出a的范圍.

解答 解:由題意可知,|x-4|≤2,即-2≤x-4≤2,解得2≤x≤6,$\frac{5-x}{x+1}$>0,
即(x-5)(x+1)<0,解得-1<x<5
∴A=[2,6],B=(-1,5),
(1)∵CUB=(-∞,-1]∪[5,+∞),
∴A∩(CUB)=[5,6].                       
(2)∵A∩C≠ϕ,
∴a>2,
故實數a的取值范圍為(2,+∞)

點評 此題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

16.設函數f(x)和g(x)分別是R上的奇函數和偶函數,則函數v(x)=f(x)|g(x)|的圖象(  )
A.關于原點對稱B.關于x軸對稱C.關于y軸對稱D.關于直線y=x對稱

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.己知f(x)=loga(ax-1)(a>1).求:
(1)函數f(x)的定義城;
(2)求使f(2x)=f-1(x)的x的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知圓C:x2+y2=4,直線l:x-y+1=0與圓C交于A,B兩點,點O為坐標原點,求△AOB的面積S.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.已知點A(5,0)和拋物線y2=4x上的動點P點,點M在線段PA上且滿足|PM|=3|MA|,則點M的軌跡方程為y2=x-$\frac{15}{4}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.已知數列{an}的前n項和為Sn,且${S_n}={n^2}-8n$
(1)求數列{an}的通項公式;
(2)求Sn的最小值及其相應的n的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.已知函數$f(x)=2sinxcosx+\frac{cos2x}{2}+3{sin^2}x+\frac{1}{2}$.
(1)求函數f(x)的單調減區間;
(2)將函數f(x)的圖象向左平移$\frac{π}{4}$個單位,再向下平移2個單位,得到函數g(x)的圖象,求函數g(x)在區間上$[{-\frac{π}{6},-\frac{π}{12}}]$的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.已知函數f(x)=2sin(ωx+φ)(ω>0,|φ|<π)的部分圖象如圖所示,且$A({\frac{π}{2},1}),B({π,-1})$,則φ值為-$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.要做一個無蓋型容器,將長為15cm,寬為8cm的長方形鐵皮先在四角分別截去一個相同的小正方形后再進行焊接,當該容器容積最大時高為$\frac{5}{3}$cm.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 91麻豆精品国产91久久久更新时间 | 中文在线亚洲 | 久久久国产精品入口麻豆 | 国产精品一二三四区 | 一级少妇片 | 亚洲欧美综合精品久久成人 | 日韩免费在线观看视频 | 日韩在线观看网站 | 欧洲三级在线 | 欧美午夜精品一区二区三区电影 | 男女羞羞视频网站 | av高清在线免费观看 | 69久久99精品久久久久婷婷 | 亚洲福利电影网 | 在线色网| 精品国产乱码久久久久久影片 | 国产成人中文字幕 | 一区二区三区高清 | 日韩免费在线视频 | 极品美女一区二区三区 | 另类五月天 | 欧美精品成人一区二区三区四区 | 91精品国产aⅴ | 欧美精品 在线观看 | 一线天逼 | 美女国产精品 | 在线看片成人 | 精品成人佐山爱一区二区 | 日韩欧美在线一区二区 | 亚洲日本成人 | 亚洲精品aaa | 中国特黄视频 | 最近中文字幕在线视频1 | 欧美视频二区 | 精品一区二区久久久久久久网站 | 久草 在线 | 国产日韩高清在线 | 免费视频一二三区 | 青青草免费在线观看 | 久久伊人免费视频 | 另类免费视频 |