【題目】設(shè)函數(shù),其中
.
(1)當(dāng)時(shí),
恒成立,求
的取值范圍;
(2)討論函數(shù)的極值點(diǎn)的個(gè)數(shù),并說明理由.
【答案】(1)或
.(2)當(dāng)
時(shí),函數(shù)有一個(gè)極值點(diǎn);
當(dāng)時(shí),函數(shù)無極值點(diǎn);當(dāng)
時(shí),函數(shù)有兩個(gè)極值點(diǎn).
【解析】
試題分析:(1)先化簡不等式:,再確定其對于
恒成立,而函數(shù)
是關(guān)于
的一次函數(shù),因此其等價(jià)于
解一元二次不等式組得
的取值范圍;(2)因?yàn)?/span>
,所以先確定導(dǎo)函數(shù)零點(diǎn)個(gè)數(shù):分兩類:一類導(dǎo)函數(shù)符號不變,即當(dāng)
時(shí),或
時(shí),第二類:導(dǎo)函數(shù)符號有變化:
且
時(shí),或
時(shí),再確定零點(diǎn)個(gè)數(shù),極值點(diǎn)個(gè)數(shù)
試題解析:(1),
,
令,要使
,則使
即可,而
是關(guān)于
的一次函數(shù),
∴解得
或
.
所以的取值范圍是
或
.
(2)令,
,
當(dāng)時(shí),
,此時(shí)
,函數(shù)
在
上遞增,無極值點(diǎn);
當(dāng)時(shí),
.
①當(dāng)時(shí),
,
,函數(shù)
在
上遞增,無極值點(diǎn);
②當(dāng)時(shí),
,設(shè)方程
的兩個(gè)根為
,
(不妨設(shè)
),
因?yàn)?/span>,所以
,
,由
,∴
,
所以當(dāng),
,函數(shù)
遞增;
當(dāng),
,函數(shù)
遞減;
當(dāng),
,函數(shù)
遞增;因此函數(shù)有兩個(gè)極值點(diǎn).
當(dāng)時(shí),
,由
,可得
,
所以當(dāng),
,函數(shù)
遞增;
當(dāng)時(shí),
,函數(shù)
遞減;因此函數(shù)有一個(gè)極值點(diǎn).
綜上,當(dāng)時(shí),函數(shù)有一個(gè)極值點(diǎn);
當(dāng)時(shí),函數(shù)無極值點(diǎn);
當(dāng)時(shí),函數(shù)有兩個(gè)極值點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)計(jì)一個(gè)計(jì)算1×3×5×7×9×11×13的算法.圖中給出了程序的一部分,則在橫線①上不能填入的數(shù)是( )
S=1;
i=3;
while i<①
S=S* i;
i=i+2;
end
print S ;
A. 13 B. 13.5 C. 14 D. 14.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=x2+2x+a沒有零點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.a<1 B.a>1
C.a(chǎn)≤1 D.a(chǎn)≥1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲船在A處觀察到乙船在它的北偏東60°方向的B處,兩船相距a n mile,乙船向正北方向行駛.若甲船的速度是乙船速度的倍,問甲船應(yīng)沿什么方向前進(jìn)才能最快追上乙船?相遇時(shí)乙船行駛了多少n mile?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某店銷售進(jìn)價(jià)為2元/件的產(chǎn)品,假設(shè)該店產(chǎn)品
每日的銷售量
(單位:千件)與銷售價(jià)格
(單位:元/件)滿足的關(guān)系式
,其中
.
(1)若產(chǎn)品銷售價(jià)格為4元/件,求該店每日銷售產(chǎn)品
所獲得的利潤;
(2)試確定產(chǎn)品銷售價(jià)格
的值,使該店每日銷售產(chǎn)品
所獲得的利潤最大.(保留1位小數(shù)點(diǎn))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某磚廠為了檢測生產(chǎn)出磚塊的質(zhì)量,從磚塊流轉(zhuǎn)均勻的生產(chǎn)線上每間隔5分鐘抽取一塊磚進(jìn)行檢測,這種抽樣方法是( )
A. 系統(tǒng)抽樣法 B. 抽簽法 C. 隨機(jī)數(shù)表法 D. 分層抽樣法
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中角A,B,C的對邊分別為a,b,c,且a(1+cosC)+c(1+cosA)=3b.
(1)求證:a,b,c成等差數(shù)列;
(2)求cosB的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三學(xué)生數(shù)學(xué)調(diào)研測試后,隨機(jī)地抽取部分學(xué)生進(jìn)行成績統(tǒng)計(jì),如圖所示是抽取出惡報(bào)的所有學(xué)生的測試成績統(tǒng)計(jì)結(jié)果的頻率分布直方圖。
(1)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,據(jù)此估計(jì)該校高三學(xué)生數(shù)學(xué)調(diào)研測試的平均分;
(2)用分層抽樣的方法在分?jǐn)?shù)段為的學(xué)生中抽取一個(gè)容量為6的樣本,則
的學(xué)生分別抽取多少人?
(3)將(2)中抽取的樣本看成一個(gè)總體,從中任取2人,求恰好有1人在分?jǐn)?shù)段的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的四個(gè)頂點(diǎn)組成的四邊形的面積為
,且經(jīng)過點(diǎn)
.
(1)求橢圓的方程;
(2)若橢圓的下頂點(diǎn)為
,如圖所示,點(diǎn)
為直線
上的一個(gè)動(dòng)點(diǎn),過橢圓
的右焦點(diǎn)
的直線
垂直于
,且與
交于
兩點(diǎn),與
交于點(diǎn)
,四邊形
和
的面積分別為
.求
的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com