【題目】已知橢圓的右焦點為
,過點
且與
軸垂直的直線被橢圓截得的線段長為
,且
與短軸兩端點的連線相互垂直.
(1)求橢圓的方程;
(2)若圓上存在兩點
,
,橢圓
上存在兩個點
滿足:
三點共線,
三點共線,且
,求四邊形
面積的取值范圍.
【答案】(1);(2)
【解析】
(1)又題意知,,
及
即可求得
,從而得橢圓方程.
(2)分三種情況:直線斜率不存在時,
的斜率為0時,
的斜率存在且不為0時,設出直線方程,聯立方程組,用韋達定理和弦長公式以及四邊形的面積公式計算即可.
(1)由焦點與短軸兩端點的連線相互垂直及橢圓的對稱性可知,,
∵過點且與
軸垂直的直線被橢圓截得的線段長為
.
又,解得
.
∴橢圓的方程為
(2)由(1)可知圓的方程為
,
(i)當直線的斜率不存在時,直線
的斜率為0,
此時
(ii)當直線的斜率為零時,
.
(iii)當直線的斜率存在且不等于零時,設直線
的方程為
,
聯立,得
,
設的橫坐標分別為
,則
.
所以,
(注:的長度也可以用點到直線的距離和勾股定理計算.)
由可得直線
的方程為
,聯立橢圓
的方程消去
,
得
設的橫坐標為
,則
.
.
綜上,由(i)(ii)(ⅲ)得的取值范圍是
.
科目:高中數學 來源: 題型:
【題目】隨著“北京八分鐘”在韓國平昌冬奧會驚艷亮相,冬奧會正式進入了北京周期,全社會對冬奧會的熱情空前高漲.
(1)為迎接冬奧會,某社區積極推動冬奧會項目在社區青少年中的普及,并統計了近五年來本社區冬奧項目青少年愛好者的人數(單位:人)與時間
(單位:年),列表如下:
依據表格給出的數據,是否可用線性回歸模型擬合與
的關系,請計算相關系數
并加以說明(計算結果精確到0.01).
(若,則線性相關程度很高,可用線性回歸模型擬合)
附:相關系數公式,參考數據
.
(2)某冰雪運動用品專營店為吸引廣大冰雪愛好者,特推出兩種促銷方案.
方案一:每滿600元可減100元;
方案二:金額超過600元可抽獎三次,每次中獎的概率同為 ,且每次抽獎互不影響,中獎1次打9折,中獎2次打8折,中獎3次打7折. v
兩位顧客都購買了1050元的產品,并且都選擇第二種優惠方案,求至少有一名顧客比選擇方案一更優惠的概率;
②如果你打算購買1000元的冰雪運動用品,請從實際付款金額的數學期望的角度分析應該選擇哪種優惠方案.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數,
.
(1)若(其中
)
(ⅰ)求實數t的取值范圍;
(ⅱ)證明:;
(2)是否存在實數a,使得在區間
內恒成立,且關于x的方程
在
內有唯一解?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列中,對任何正整數n都有:
(1)若數列是首項和公差都是1的等差數列,求證:數列
是等比數列;
(2)若數列是首項為1的等比數列,數列
是否是等差數列?若是請求出通項公式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法中,正確的有______.
①回歸直線恒過點
,且至少過一個樣本點;
②根據列列聯表中的數據計算得出
,而
,則有
的把握認為兩個分類變量有關系,即有
的可能性使得“兩個分類變量有關系”的推斷出現錯誤;
③是用來判斷兩個分類變量是否相關的隨機變量,當
的值很小時可以推斷兩類變量不相關;
④某項測量結果服從正態分布
,則
,則
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】實驗中學從高二級部中選拔一個班級代表學校參加“學習強國知識大賽”,經過層層選拔,甲、乙兩個班級進入最后決賽,規定回答1個相關問題做最后的評判選擇由哪個班級代表學校參加大賽.每個班級6名選手,現從每個班級6名選手中隨機抽取3人回答這個問題已知這6人中,甲班級有4人可以正確回答這道題目,而乙班級6人中能正確回答這道題目的概率每人均為,甲、乙兩班級每個人對問題的回答都是相互獨立,互不影響的.
(1)求甲、乙兩個班級抽取的6人都能正確回答的概率;
(2)分別求甲、乙兩個班級能正確回答題目人數的期望和方差
、
,并由此分析由哪個班級代表學校參加大賽更好?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】比較甲、乙兩名學生的數學學科素養的各項能力指標值(滿分為5分,分值高者為優),繪制了如圖1所示的六維能力雷達圖,例如圖中甲的數學抽象指標值為4,乙的數學抽象指標值為5,則下面敘述正確的是( )
A. 乙的邏輯推理能力優于甲的邏輯推理能力
B. 甲的數學建模能力指標值優于乙的直觀想象能力指標值
C. 乙的六維能力指標值整體水平優于甲的六維能力指標值整體水平
D. 甲的數學運算能力指標值優于甲的直觀想象能力指標值
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com