日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

【題目】如圖,在三棱柱中,平面的中點(diǎn),.

(Ⅰ)求證:平面

(Ⅱ)求平面與平面所成銳二面角的平面角的余弦值.

【答案】(Ⅰ)證明見解析,(Ⅱ)

【解析】

)連結(jié)于點(diǎn),連結(jié),可知,根據(jù)線面平行的判定定理,證明即可.

)法一: ,可知,即,根據(jù)平面,可知平面,即,以為原點(diǎn),所在直線分別為 軸,建立空間直角坐標(biāo)系,求各點(diǎn)坐標(biāo),計(jì)算平面的法向量為,平面的法向量為,根據(jù),求解即可. 法二:延長(zhǎng)交于,連接,過,過,連接,則平面,又,所以平面為平面與平面所成銳二面角的平面角. ,計(jì)算

,利用,求解,即可.

)證明:連結(jié)于點(diǎn),連結(jié).

中點(diǎn),中位線.

所以.

平面平面.

所以平面.

)法一:因?yàn)?/span>的中點(diǎn),所以.

又因?yàn)?/span>,所以,則

,所以.

又因?yàn)?/span>平面,所以建立如圖所示空間直角坐標(biāo)系,則.

平面的法向量為.

設(shè)平面的法向量為,則由,得

,則.

所以平面與平面所成的銳二面角的余弦值為.

法二:延長(zhǎng)交于,連接,過

,連接

平面,又,所以平面

為平面與平面所成銳二面角的平面角.

中,,所以高為中線,

,∴,∴

中,

,∴

中,

所以平面與平面所成銳二面角的平面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

已知函數(shù)是奇函數(shù),的定義域?yàn)?/span>.當(dāng)時(shí), .(e為自然對(duì)數(shù)的底數(shù)).

(1)若函數(shù)在區(qū)間上存在極值點(diǎn),求實(shí)數(shù)的取值范圍;

(2)如果當(dāng)x≥1時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCP中,DAP的中點(diǎn),EGF分別為PCCBPD的中點(diǎn),將沿CD折起,使得二面角為直二面角.

1)證明:平面EFG

2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了鼓勵(lì)運(yùn)動(dòng)提高所有用戶的身體素質(zhì),特推出一款運(yùn)動(dòng)計(jì)步數(shù)的軟件,所有用戶都可以通過每天累計(jì)的步數(shù)瓜分紅包,大大增加了用戶走步的積極性,所以該軟件深受廣大用戶的歡迎.該公司為了研究“日平均走步數(shù)和性別是否有關(guān)”,統(tǒng)計(jì)了20191月份所有用戶的日平均步數(shù),規(guī)定日平均步數(shù)不少于8000的為“運(yùn)動(dòng)達(dá)人”,步數(shù)在8000以下的為“非運(yùn)動(dòng)達(dá)人”,采用按性別分層抽樣的方式抽取了100個(gè)用戶,得到如下列聯(lián)表:

運(yùn)動(dòng)達(dá)人

非運(yùn)動(dòng)達(dá)人

總計(jì)

35

60

26

總計(jì)

100

1)(i)將列聯(lián)表補(bǔ)充完整;

ii)據(jù)此列聯(lián)表判斷,能否有的把握認(rèn)為“日平均走步數(shù)和性別是否有關(guān)”?

2)將頻率視作概率,從該公司的所有人“運(yùn)動(dòng)達(dá)人”中任意抽取3個(gè)用戶,求抽取的用戶中女用戶人數(shù)的分布列及期望.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)當(dāng)時(shí),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,三棱柱中,平面,點(diǎn)分別在線段上,且是線段的中點(diǎn).

(Ⅰ)求證:平面

(Ⅱ)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓的左右焦點(diǎn),且橢圓的離心率為,直線與橢圓交于兩點(diǎn),當(dāng)直線時(shí)周長(zhǎng)為8.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)若,是否存在定圓,使得動(dòng)直線與之相切,若存在寫出圓的方程,并求出的面積的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《周髀算經(jīng)》中給出了勾股定理的絕妙證明.如圖是趙爽弦圖及注文.弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱為弦實(shí).圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成朱色及黃色,其面積稱為朱實(shí)、黃實(shí).×+(股-勾)2=4×朱實(shí)+黃實(shí)=弦實(shí),化簡(jiǎn)得勾2+2=2.若圖中勾股形的勾股比為,向弦圖內(nèi)隨機(jī)拋擲100顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘顆數(shù)大約為( )(參考數(shù)據(jù):

A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在幾何體中,,直角梯形中,,且,且.

1)求證:平面平面

2)若直線與平面所成角的正切值為,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 在线观看黄色小视频 | 狠狠草视频 | 一级黄色av | 欧美日韩免费在线 | 中文字幕在线免费观看视频 | 中日韩毛片 | 欧美一区二区三区在线 | 精品国产区 | 国产成人区 | 中文字幕精品三区 | 8090理论片午夜理伦片 | 日韩毛片免费 | 精品一区在线播放 | www.wuye| 日韩免费观看 | 91视频色 | 亚洲福利网站 | 日韩成人精品 | 久久久久久久综合 | 国产午夜精品一区二区三区 | 免费观看一区二区 | 欧美一区二 | 五月婷婷丁香花 | 欧美黄色网 | 成人福利网站 | 国产日产精品一区二区三区的介绍 | 一区二区三区国产 | 国产精品久久久久久久午夜 | 一本久久道| 天天拍天天干 | 天天做夜夜爽 | 国产一级特黄aaa大片 | 中文字幕精品视频 | 欧美亚洲天堂 | 国产精品不卡 | 成人黄色在线视频 | 青青草视频污 | 国产精品美女久久 | 久久噜噜 | 欧美在线播放视频 | a级片在线观看 |