【題目】在直角坐標系xoy中,已知曲線C:(
為參數),以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,
(1)求曲線C的極坐標方程,若A,B為曲線C上的兩點,證明當時,
定值;
(2)若過點且傾斜角為
的直線l與曲線C相交于A,B兩點,求
的值.
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知直線l:xy
2=0,拋物線C:y2=2px(p>0).
(1)若直線l過拋物線C的焦點,求拋物線C的方程;
(2)已知拋物線C上存在關于直線l對稱的相異兩點P和Q.
①求證:線段PQ的中點坐標為;
②求p的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量,
,設函數
,且
的圖象過點
和點
.
(Ⅰ)求的值;
(Ⅱ)將的圖象向左平移
(
)個單位后得到函數
的圖象.若
的圖象上各最高點到點
的距離的最小值為1,求
的單調增區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某居民區隨機抽取10個家庭,獲得第個家庭的月收入
(單位:千元)與月儲蓄
(單位:千元)的數據資料,計算得
,
,
,
.
(1)求家庭的月儲蓄關于月收入
的線性回歸方程
,并判斷變量
與
之間是正相關還是負相關;
(2)若該居民區某家庭月收入為7千元,預測該家庭的月儲蓄.(注:線性回歸方程中,
,其中
,
為樣本平均值.)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》中,將底面為長方形且有一條側棱與地面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑,首屆中國國際進口博覽會的某展館棚頂一角的鋼結構可以抽象為空間圖形陽馬,如圖所示,在陽馬中,
底面
.
(1)已知,斜梁
與底面
所成角為
,求立柱
的長;(精確到
)
(2)求證:四面體為鱉臑.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標準:(單位:噸),用水量不超過的部分按平價收費,超過
的部分按議價收費,為了了解全布市民用用水量分布情況,通過袖樣,獲得了100位居民某年的月用水量(單位:噸),將數據按照
……
分成9組,制成了如圖所示的頻率分布直方圖
(1)求頻率分布直方圖中的值;
(2)若該市政府看望使85%的居民每月的用水量不超過標準(噸),估計
的值,并說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】化簡
(1)
(2)
【答案】(1) ;(2)
.
【解析】試題分析:(1)切化弦可得三角函數式的值為-1
(2)結合三角函數的性質可得三角函數式的值為
試題解析:
(1)tan70°cos10°( tan20°﹣1)
=cot20°cos10°( ﹣1)
=cot20°cos10°( )
=×cos10°×(
)
=×cos10°×(
)
=×(﹣
)
=﹣1
(2)∵(1+tan1°)(1+tan44°)=1+(tan1°+tan44°)+tan1°tan44°
=1+tan(1°+44°)[1﹣tan1°tan44°]+tan1°tan44°=2.
同理可得(1+tan2°)(1+tan43°)
=(1+tan3°)(1+tan42°)
=(1+tan4°)(1+tan41°)=…=2,
故=
點睛:三角函數式的化簡要遵循“三看”原則:一看角,這是重要一環,通過看角之間的差別與聯系,把角進行合理的拆分,從而正確使用公式 ;二看函數名稱,看函數名稱之間的差異,從而確定使用的公式,常見的有切化弦;三看結構特征,分析結構特征,可以幫助我們找到變形的方向,如遇到分式要通分等.
【題型】解答題
【結束】
18
【題目】平面內給定三個向量
(1)求
(2)求滿足的實數
.
(3)若,求實數
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線的極坐標方程是
,以極點為原點,以極軸為
軸的正半軸,取相同的單位長度,建立平面直角坐標系,直線
的參數方程為
.
(1)寫出直線的普通方程與曲線
的直角坐標方程;
(2)設曲線經過伸縮變換
得到曲線
,曲線
上任一點為
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
分別為左右焦點,
是橢圓
上點,且
.
(1)求橢圓的方程;
(2)過的直線
與橢圓
交于不同的兩點
,則
的內切圓的面積是否存在最大值?若存在,求出這個最大值以及此時的直線方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com