日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知點M(0,-1),直線l:y=mx+1與曲線C:ax2+y2=2(m,a∈R)交于A、B兩點.
(1)當m=0時,有∠AOB=
π
3
,求曲線C的方程;
(2)當實數a為何值時,對任意m∈R,都有
OA
OB
為定值T?指出T的值;
(3)設動點P滿足
MP
=
OA
+
OB
,當a=-2,m變化時,求點P的軌跡方程;
(4)是否存在常數M,使得對于任意的a∈(0,1),m∈R,都有
OA
OB
<M
恒成立?如果存在,求出的M得最小值;如果不存在,說明理由.
(1)由題意,直線方程為y=1,代入曲線C:ax2+y2=2可得 A(-
1
a
,1)
B(
1
a
,1)

∠AOB=
π
3
,∴tan300 =
1
a
,∴a=3
∴曲線C的方程為3x2+y2=2
(2)將直線l:y=mx+1與曲線C:ax2+y2=2聯立,化簡得(a+m2)x2+2mx-1=0
設A(x1,y1),B(x2,y2),則知 x1+x2=-
2m
m2+a
x1x2=
-1
m2+a

∴x1x2+y1y2=
-1
m2+a
+(mx1+1)(mx2+1)=
m 2-1
m2+a
+1

對任意m∈R,都有
OA
OB
=T
成立.
得x1x2+y1y2=T定值,
∴可有a=-1,此時T=2;
(3)由(2)知 x1+x2=
2m
m2-2
y1+y2=
4m2-4
m2-2

設P(x,y),則(x,y+1)=(x1+x2,y1+y2
x=-
2m
m2-2
,y=-
m2+2
m2-2

消去m得:(y-2)2-2x2=1,此即為點P的軌跡方程;
(4)由(2)知:
OA
OB
=
m 2-1
m2+a
+1

對于任意的a∈(0,1),m∈R,它的最大值小于2,
故取M的值大于2時,都有
OA
OB
<M
恒成立,
故存在常數M,使得對于任意的a∈(0,1),m∈R,都有
OA
OB
<M
恒成立,
M得最小值為2.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知點M(0,-1),點N在直線x-y+1=0,若直線MN垂直于直線x+2y-3=0,則N點坐標是
(2,3)
(2,3)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點 M(0,-1),F(0,1),過點M的直線l與曲線y=
13
x3-4x+4
在x=-2處的切線平行.
(1)求直線l的方程;
(2)求以點F為焦點,l為準線的拋物線C的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點M(0,1,-2),平面π過原點,且垂直于向量
n
=(1,-2,2)
,則點M到平面π的距離為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

雙曲線C與橢圓
x2
8
+
y2
4
=1有相同的焦點,直線y=
3
3
x為C的一條漸近線.
(1)求雙曲線C的方程;
(2)已知點M(0,1),設P是雙曲線C上的點,Q是點P關于原點的對稱點,求
MP
MQ
的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點M(0,-1),直線l:y=mx+1與曲線C:ax2+y2=2(m,a∈R)交于A、B兩點.
(1)當m=0時,有∠AOB=
π
3
,求曲線C的方程;
(2)當實數a為何值時,對任意m∈R,都有
OA
OB
=-2
成立.
(3)設動點P滿足
MP
=
OA
+
OB
,當a=-2,m變化時,求|OP|的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 成人黄色一级片 | 日本高清中文字幕 | 日本天堂网 | 黄网站免费观看 | 国产美女精品视频 | 成人免费网站黄 | 天天澡天天狠天天天做 | 欧美成人一区二区三区 | 日韩福利在线 | 一区二区三区网站 | 欧美精品一二区 | 91精品久久久久久久久久 | 激情综合婷婷 | 免费视频a| 欧美一级黄色片 | 国产成人精品一区二区 | 欧美成人高清 | 国产激情久久久 | 亚洲欧美在线播放 | 国产精品免费在线 | 亚洲综合在线一区 | 天天视频国产 | 中文字幕一区二区三区视频 | 国产黄色录像 | 久久麻豆视频 | 日韩欧美在线观看视频 | 国内自拍偷拍 | 91久久久久久久久久久 | 久久爱综合 | 日韩专区中文字幕 | 久久精品欧美一区二区三区不卡 | 国产一区二区视频在线 | 一级黄色av | 日韩黄网| 午夜成人在线视频 | 国产精品久久久久久久久久久久午夜片 | 午夜视频在线看 | 黄色av大全| 亚洲福利网 | 国产成人亚洲精品自产在线 | 天堂在线中文资源 |