【題目】(1)解關于x的不等式x2-2mx+m+1>0;
(2)解關于x的不等式ax2-(2a+1)x+2<0.
【答案】(1)見解析(2)見解析
【解析】試題分析:(1)根據判別式與零大小關系分類討論,最后寫成解集形式,(2)根據a與零大小,以及兩根大小分二級討論.
試題解析:解 (1)原不等式對應方程的判別式Δ=(-2m)2-4(m+1)=4(m2-m-1).
當m2-m-1>0,即m>或m<
時,由于方程x2-2mx+m+1=0的兩根是m±
,所以原不等式的解集是{x|x<m-
,或x>m+
};
當Δ=0,即m=時,
不等式的解集為{x|x∈R,且x≠m};
當Δ<0,即<m<
時,不等式的解集為R.
綜上,當m>或m<
時,不等式的解集為{x|x<m-
,或x>m+
};當m=
時,不等式的解集為{x|x∈R,且x≠m};當
<m<
時,不等式的解集為R.
(2)原不等式可化為(ax-1)(x-2)<0.
①當a>0時,原不等式可以化為a(x-2)<0,根據不等式的性質,這個不等式等價于(x-2)·
<0.因為方程(x-2)
=0的兩個根分別是2,
,所以當0<a<
時,2<
,則原不等式的解集是
;當a=
時,原不等式的解集是;當a>
時,
<2,則原不等式的解集是
.
②當a=0時,原不等式為-(x-2)<0,解得x>2,即原不等式的解集是{x|x>2}.
③當a<0時,原不等式可以化為a(x-2)<0,根據不等式的性質,這個不等式等價于(x-2)
>0,由于
<2,故原不等式的解集是
.
綜上,當a=0時,不等式解集為(2,+∞);當0<a<時,不等式解集為
;當a=
時,不等式解集為;當a>
時,不等式解集為
;當a<0時,不等式解集為
∪(2,+∞).
科目:高中數學 來源: 題型:
【題目】(1)在圓內直徑所對的圓周角是直角.此定理在橢圓內(以焦點在軸上的標準形式為例)可表述為“過橢圓
的中心
的直線交橢圓于
兩點,點
是橢圓上異于
的任意一點,當直線
,
斜率存在時,它們之積為定值.”試求此定值;
(2)在圓內垂直于弦的直徑平分弦.類比(1)將此定理推廣至橢圓,不要求證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某登山隊在山腳處測得山頂
的仰角為
,沿傾斜角為
(其中
)的斜坡前進
后到達
處,休息后繼續行駛
到達山頂
.
(1)求山的高度;
(2)現山頂處有一塔.從
到
的登山途中,隊員在點
處測得塔的視角為
.若點
處高度
為
,則
為何值時,視角
最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C的方程為x2+y2﹣4x﹣12=0,點P(3,1).
(1)求該圓的圓心坐標及半徑;
(2)求過點P的直線被圓C截得弦長最大時的直線l的方程;
(3)若圓C的一條弦AB的中點為P,求直線AB的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】十九大以來,國家深入推進精準脫貧,加大資金投入,強化社會幫扶,為了更好的服務于人民,派調查組到某農村去考察和指導工作.該地區有200戶農民,且都從事水果種植,據了解,平均每戶的年收入為3萬元.為了調整產業結構,調查組和當地政府決定動員部分農民從事水果加工,據估計,若能動員戶農民從事水果加工,則剩下的繼續從事水果種植的農民平均每戶的年收入有望提高
,而從事水果加工的農民平均每戶收入將為
萬元.
(1)若動員戶農民從事水果加工后,要使從事水果種植的農民的總年收入不低于動員前從事水果種植的農民的總年收入,求
的取值范圍;
(2)在(1)的條件下,要使這200戶農民中從事水果加工的農民的總收入始終不高于從事水果種植的農民的總收入,求的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數的圖象經過點
,且相鄰的兩條對稱軸之間的距離為
.
(1)求函數的解析式;
(2)若將函數的圖象向右平移
個單位后得到函數
的圖象,當
時,
的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】北方某市一次全市高中女生身高統計調查數據顯示:全市名高中女生的身高(單位:
)服從正態分布
.現從某高中女生中隨機抽取
名測量身高,測量發現被測學生身高全部在
和
之間,現將測量結果按如下方式分成
組:第
組
,第
組
,…,第
組
,下圖是按上述分組方法得到的頻率分布直方圖.
(1)求這名女生身高不低于
的人數;
(2)在這名女生身高不低于
的人中任意抽取
人,將該
人中身高排名(從高到低)在全市前
名的人數記為
,求
的數學期望.
參考數據: ,
,
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com