【題目】如圖,在四棱錐中,
為正方形,且平面
平面
,點(diǎn)
為棱
的中點(diǎn).
(1)在棱上是否存在一點(diǎn)
,使得
平面
?并說(shuō)明理由;
(2)若,求直線
與平面
所成角的正弦值.
【答案】(1)存在,理由見解析;(2).
【解析】
(1)當(dāng)為
中點(diǎn)時(shí),分別取
,
中點(diǎn)
,
,連接
,
,
,
,由平面幾何知識(shí)證明四邊形
是平行四邊形,最后由線面平行的判定定理證明即可;
(2)取中點(diǎn)
,連接
,
,以
為原點(diǎn),
,
,
分別為
,
,
軸建立空間直角坐標(biāo)系,利用向量法求解即可.
(1)當(dāng)為
中點(diǎn)時(shí),
平面
.理由如下:
如圖,分別取,
中點(diǎn)
,
,連接
,
,
,
又∵是
的中點(diǎn),∴
,
又∵為正方形,則
,
∴,
又∵是
中點(diǎn),∴
,
,則四邊形
是平行四邊形
∴
又平面
,
平面
,
∴平面
.
(2)如圖,取中點(diǎn)
,連接
,
又,則
∵平面平面
,平面
平面
,
平面
∴平面
∴以為原點(diǎn),
,
,
分別為
,
,
軸建立空間直角坐標(biāo)系
設(shè),則
,
,
,
,
∴,
,
設(shè)平面的一個(gè)法向量為
,則
令得
,
,則
,
∴
∴直線與平面
所成角的正弦值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形中,
,以
為折痕把
折起,使點(diǎn)
到達(dá)點(diǎn)
的位置,且
.
(1)證明:平面
;
(2)若為
的中點(diǎn),二面角
等于60°,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù),
為直線
的傾斜角),以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)寫出曲線的直角坐標(biāo)方程,并求
時(shí)直線
的普通方程;
(2)若直線和曲線
交于兩點(diǎn)
,點(diǎn)
的直角坐標(biāo)為
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙三位同學(xué)在一項(xiàng)集訓(xùn)中的40次測(cè)試分?jǐn)?shù)都在[50,100]內(nèi),將他們的測(cè)試分?jǐn)?shù)分別繪制成頻率分布直方圖,如圖所示,記甲、乙、丙的分?jǐn)?shù)標(biāo)準(zhǔn)差分別為s1,s2,s3,則它們的大小關(guān)系為( )
A.s1s2
s3B.s1
s3
s2
C.s3s1
s2D.s3
s2
s1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】天干地支紀(jì)年法,源于中國(guó).中國(guó)自古便有十天干與十二地支.十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸,十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支紀(jì)年法是按順序以一個(gè)天干和一個(gè)地支相配,排列起來(lái),天干在前,地支在后,天干由“甲”起,地支由“子”起,比如說(shuō)第一年為“甲子”,第二年為“乙丑”,第三年為“丙寅”… …依此類推,排列到“癸酉”后,天干回到“甲”重新開始,即“甲戌”“乙亥”,之后地支回到“子”重新開始,即“丙子”… …依此類推.1911年中國(guó)爆發(fā)推翻清朝專制帝制、建立共和政體的全國(guó)性革命,這一年是辛亥年,史稱“辛亥革命”.1949新中國(guó)成立,請(qǐng)推算新中國(guó)成立的年份為( )
A.己丑年B.己酉年
C.丙寅年D.甲寅年
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線,
為直線
上的動(dòng)點(diǎn),過(guò)點(diǎn)
作拋物線
的兩條切線,切點(diǎn)分別為
,
.
(1)證明:直線過(guò)定點(diǎn);
(2)若以為圓心的圓與直線
相切,且切點(diǎn)為線段
的中點(diǎn),求該圓的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將等腰直角三角形沿斜邊上的高
翻折,使二面角
的大小為
,翻折后
的中點(diǎn)為
.
(Ⅰ)證明平面
;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)點(diǎn)的動(dòng)直線l與y軸交于點(diǎn)
,過(guò)點(diǎn)T且垂直于l的直線
與直線
相交于點(diǎn)M.
(1)求M的軌跡方程;
(2)設(shè)M位于第一象限,以AM為直徑的圓與y軸相交于點(diǎn)N,且
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】趙爽是我國(guó)古代數(shù)學(xué)家、天文學(xué)家,大約公元222年,趙爽為《周髀算經(jīng)》一書作序時(shí),介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長(zhǎng)得到的正方形是由個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構(gòu)造如圖(2)所示的圖形,它是由
個(gè)全等的三角形與中間的一個(gè)小正六邊形組成的一個(gè)大正六邊形,設(shè)
,若在大正六邊形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小正六邊形的概率為( )
A.B.
C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com