結束]22[題目]已知直線. .以坐標原點為極點. 軸的正半軸為極軸建立極坐標系.曲線的直角坐標方程為.(Ⅰ)將曲線的直角坐標方程化為極坐標方程,(Ⅱ)設點的直角坐標為.直線與曲線的交點為..求的取值范圍.">

日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

【題目】已知函數

(Ⅰ)當時,求函數的單調遞減區間;

(Ⅱ)若時,關于的不等式恒成立,求實數的取值范圍;

(Ⅲ)若數列滿足 ,記的前項和為,求證: .

【答案】I;(II;(III證明見解析.

【解析】試題分析:(Ⅰ)求出,在定義域內,分別令求得的范圍,可得函數增區間, 求得的范圍,可得函數的減區間;(Ⅱ)當時,因為,所以顯然不成立,先證明因此時, 上恒成立,再證明當時不滿足題意,從而可得結果;(III)先求出等差數列的前項和為,結合(II)可得,各式相加即可得結論.

試題解析:)由,得.所以

,解得(舍去),所以函數的單調遞減區間為 .

)由得,

時,因為,所以顯然不成立,因此.

,則,令,得.

時, ,所以,即有.

因此時, 上恒成立.

時, 上為減函數,在上為增函數,

,不滿足題意.

綜上,不等式上恒成立時,實數的取值范圍是.

III)證明:由知數列的等差數列,所以

所以

由()得, 上恒成立.

所以. 將以上各式左右兩邊分別相加,得

.因為

所以

所以.

型】解答
【/span>束】
22

【題目】已知直線, (為參數, 為傾斜角).以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的直角坐標方程為.

(Ⅰ)將曲線的直角坐標方程化為極坐標方程;

(Ⅱ)設點的直角坐標為,直線與曲線的交點為,求的取值范圍.

【答案】I;(II.

【解析】試題分析:(Ⅰ)將由代入,化簡即可得到曲線的極坐標方程;(Ⅱ)將的參數方程代入,得,根據直線參數方程的幾何意義,利用韋達定理結合輔助角公式,由三角函數的有界性可得結果.

試題解析:(Ⅰ)由,得,即

所以曲線的極坐標方程為

II)將的參數方程代入,得

, 所以,又

所以,且,

所以,

,得,所以.

的取值范圍是.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,四樓錐中,平面平面,底面為梯形. ,且均為正三角形. 的中點重心, 相交于點.

(1)求證: 平面

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在棱長為1的正方體中,點E是棱AB上的動點.

1)求證:

2)若直線與平面所成的角是45,請你確定點E的位置,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近年來鄭州空氣污染較為嚴重,現隨機抽取一年(365天)內100天的空氣中指數的監測數據,統計結果如下:

空氣質量

輕微污染

輕度污染

中度污染

中度重污染

重度污染

天數

4

13

18

30

9

11

15

記某企業每天由空氣污染造成的經濟損失為(單位:元),指數為.當在區間內時對企業沒有造成經濟損失;當在區間內時對企業造成經濟損失成直線模型(當指數為150時造成的經濟損失為500元,當指數為200時,造成的經濟損失為700元);當指數大于300時造成的經濟損失為2000元.

(1)試寫出的表達式;

(2)試估計在本年內隨機抽取一天,該天經濟損失大于500元且不超過900元的概率;

(3)若本次抽取的樣本數據有30天是在供暖季,其中有8天為重度污染,完成下面列聯表,并判斷是否有的把握認為鄭州市本年度空氣重度污染與供暖有關?

附:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.32

2.07

2.70

3.74

5.02

6.63

7.87

10.828

,其中

非重度污染

重度污染

合計

供暖季

非供暖季

合計

100

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩家銷售公司擬各招聘一名產品推銷員,日工資方案如下: 甲公司規定底薪80元,每銷售一件產品提成1元; 乙公司規定底薪120元,日銷售量不超過45件沒有提成,超過45件的部分每件提成8元.

(I)請將兩家公司各一名推銷員的日工資 (單位: 元) 分別表示為日銷售件數的函數關系式;

(II)從兩家公司各隨機選取一名推銷員,對他們過去100天的銷售情況進行統計,得到如下條形圖。若記甲公司該推銷員的日工資為,乙公司該推銷員的日工資為 (單位: 元),將該頻率視為概率,請回答下面問題:

某大學畢業生擬到兩家公司中的一家應聘推銷員工作,如果僅從日均收入的角度考慮,請你利用所學的統計學知識為他作出選擇,并說明理由.

【答案】(I)見解析; (Ⅱ)見解析.

【解析】分析:(I)依題意可得甲公司一名推銷員的工資與銷售件數的關系是一次函數的關系式,而乙公司是分段函數的關系式,由此解得;(Ⅱ)分別根據條形圖求得甲、乙公司一名推銷員的日工資的分布列,從而可分別求得數學期望,進而可得結論.

詳解:(I)由題意得,甲公司一名推銷員的日工資 (單位:) 與銷售件數的關系式為: .

乙公司一名推銷員的日工資 (單位: ) 與銷售件數的關系式為:

()記甲公司一名推銷員的日工資為 (單位: ),由條形圖可得的分布列為

122

124

126

128

130

0.2

0.4

0.2

0.1

0.1

記乙公司一名推銷員的日工資為 (單位: ),由條形圖可得的分布列為

120

128

144

160

0.2

0.3

0.4

0.1

∴僅從日均收入的角度考慮,我會選擇去乙公司.

點睛:求解離散型隨機變量的數學期望的一般步驟為:

第一步是判斷取值,即判斷隨機變量的所有可能取值,以及取每個值所表示的意義;

第二步是探求概率,即利用排列組合,枚舉法,概率公式,求出隨機變量取每個值時的概率;

第三步是寫分布列,即按規范形式寫出分布列,并注意用分布列的性質檢驗所求的分布列或某事件的概率是否正確;

第四步是求期望值,一般利用離散型隨機變量的數學期望的定義求期望的值

型】解答
束】
19

【題目】如圖,在四棱錐中,底面為菱形, 平面 分別是 的中點.

(1)證明:

(2)設為線段上的動點,若線段長的最小值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】四棱錐中, ,且平面 是棱的中點.

(1)證明: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近年電子商務蓬勃發展, 年某網購平臺“雙”一天的銷售業績高達億元人民幣,平臺對每次成功交易都有針對商品和快遞是否滿意的評價系統.從該評價系統中選出次成功交易,并對其評價進行統計,網購者對商品的滿意率為,對快遞的滿意率為,其中對商品和快遞都滿意的交易為次.

(1)根據已知條件完成下面的列聯表,并回答能否有的把握認為“網購者對商品滿意與對快遞滿意之間有關系”?

對快遞滿意

對快遞不滿意

合計

對商品滿意

對商品不滿意

合計

(2)為進一步提高購物者的滿意度,平臺按分層抽樣方法從中抽取次交易進行問卷調查,詳細了解滿意與否的具體原因,并在這次交易中再隨機抽取次進行電話回訪,聽取購物者意見.求電話回訪的次交易至少有一次對商品和快遞都滿意的概率.

附: (其中為樣本容量)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線是中心在原點,焦點在軸上的雙曲線的右支,它的離心率剛好是其對應雙曲線的實軸長,且一條漸近線方程是,線段是過曲線右焦點的一條弦,是弦的中點。

(1)求曲線的方程;

(2)求點軸距離的最小值;

(3)若作出直線使點在直線上的射影滿足.當點在曲線上運動時,求的取值范圍.

(參考公式:若為雙曲線右支上的點,為右焦點,則.(為離心率))

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列中,在直線

(1)求數列{an}的通項公式

(2)令,數列的前n項和為

(ⅰ)求

(ⅱ)是否存在整數λ,使得不等式(-1)nλ (nN)恒成立?若存在,求出λ的取值的集合;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 青青草视频免费在线观看 | 日日碰碰 | 天堂在线中文字幕 | 亚洲一级片在线免费观看 | 日韩另类视频 | 成人久久亚洲 | 欧美精品一区二区三区四区五区 | 欧美伦理影院 | 欧美日一区二区 | 少妇一级淫片免费放 | 欧美日韩一区二区三区免费视频 | 黄色网址网站在线观看 | av成人在线观看 | 午夜精品久久久久久久星辰影院 | 能在线观看的黄色网址 | 一级欧美 | 91免费视频观看 | 中文字幕一区二区三区乱码图片 | 91玖玖| 国内精品一区二区 | av影音资源 | 国产成人久久 | 超碰人人在线 | 亚洲一区成人 | 在线激情网 | 成人午夜在线视频 | 2019亚洲日韩新视频 | 国产精品久久久久久无遮挡 | 精品不卡| 91伊人 | 欧美黄色一区二区 | 黄色一级大片在线免费看产 | 天天添夜夜操 | 日日日操 | 久久精选视频 | 欧美精品第一页 | 色呦呦在线看 | 久久99国产精一区二区三区 | 欧美日韩在线看 | 久久99精品久久久久久久 | 91电影院 |