日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知橢圓
x=2cosθ
y=sinθ
(θ為參數)
(1)求該橢圓的焦點坐標和離心率;
(2)已知點P是橢圓上任意一點,求點P與點M(0,2)的距離|PM|的最大值.
分析:(1)利用同角三角函數的關系消去參數θ得到橢圓的直角坐標方程,再根據焦點和離心率的定義直接可求得.
(2)設點P的坐標,代入(1)中所得橢圓方程,利用M(0,2)及兩點間的距離公式求|PM|的表達式,結合y的范圍即可求出|PM|的最大值.
解答:解:(1)由
x=2cosθ
y=sinθ
x
2
=cosθ
y=sinθ

x2
4
+y2=1
---------------------------------------------------------------------------(2分)
∴a2=4,b2=1
∴c2=a2-b2=3
∴焦點坐標為
3
 , 0 )
( -
3
 , 0 )
-------------------------------------(4分)
離心率e=
c
a
=
3
2
------------------------------------------------------------------(6分)
(2)設點P的坐標為P(x,y),則
x2
4
+y2=1
,即:x2=4-4y2------------------------------------------------(8分)
|PM|=
x2+(y-2)2
=
-3y2-4y+8
=
-3(y+
2
3
)
2
+
28
3
------------------------------------------------(12分)
∵y∈[-1,1]
∴當y=-
2
3
時,|PM|≥
28
3
=
2
21
3

∴|PM|的最大值是
2
21
3
----------------------------------------------------(14分)
點評:本題主要考查了橢圓的參數方程,以及橢圓的簡單性質,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知直線l:x+y=1與橢圓C:
x=2cosθ
y=sinθ
(θ為參數),若直線l與橢圓交于A,B兩點,求線段AB的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•唐山二模)選修4-4:坐標系與參數方程
已知直線l:
x=m+tcosα
y=tsinα
(t為參數)經過橢圓C:
x=2cosφ
y=
3
sinφ
(φ為參數)的左焦點F.
(Ⅰ)求m的值;
(Ⅱ)設直線l與橢圓C交于A、B兩點,求|FA|•|FB|的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C1
x=2cosθ
y=sinθ
(θ為參數),橢圓C2以C1的長軸為短軸,且與C1有相同的離心率
(1)求橢圓C2的普通方程
(2)設O為坐標原點,點A,B分別在橢圓C1和C2上,
OB
=2
OA
,求直線AB的方程.《用參數方程的知識求解》

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓
x=2cosθ
y=sinθ
(θ為參數)
(1)求該橢圓的焦點坐標和離心率;
(2)已知點P是橢圓上任意一點,求點P與點M(0,2)的距離|PM|的最大值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产乱码精品一区二区三区五月婷 | 男女羞羞视频在线观看免费 | 成人av网页 | 黄色一级毛片免费 | 精品久久久久久亚洲精品 | 亚洲国内精品 | 国产一区不卡 | 日韩资源| a在线免费观看 | 91精品国产综合久久久久久丝袜 | 亚洲人成电影网 | 国产一区二区三区在线免费 | 国产91在线观看 | 婷婷成人在线 | 97热在线| 久久丁香| 欧美理伦片在线播放 | 激情久久久| 国产日韩欧美一区二区 | 亚洲协和影视 | 久久精品国产清自在天天线 | 欧美精品一区二区视频 | 午夜精品久久久久久久久久久久 | 国产一区久久精品 | 黄色三级网 | 黄色网址进入 | 91在线免费观看 | 极品美女国产精品免费一区 | 97伦理电影 | 日韩精品一区二区三区老鸭窝 | 99国产精品99久久久久久 | 最新av片 | 欧美一区久久 | 日本爽快片毛片 | 91国自产区一二三区 | 亚洲天堂电影网 | 成人黄色大片 | 男人的天堂久久 | 91精品久久久久久久久中文字幕 | 久久成人一区 | 国产精品国产精品国产专区不片 |